248 research outputs found

    Advances in Modelling and Control of Wind and Hydrogenerators

    Get PDF
    Rapid deployment of wind and solar energy generation is going to result in a series of new problems with regards to the reliability of our electrical grid in terms of outages, cost, and life-time, forcing us to promptly deal with the challenging restructuring of our energy systems. Increased penetration of fluctuating renewable energy resources is a challenge for the electrical grid. Proposing solutions to deal with this problem also impacts the functionality of large generators. The power electronic generator interactions, multi-domain modelling, and reliable monitoring systems are examples of new challenges in this field. This book presents some new modelling methods and technologies for renewable energy generators including wind, ocean, and hydropower systems

    Advances in Modelling and Control of Wind and Hydrogenerators

    Get PDF
    Rapid deployment of wind and solar energy generation is going to result in a series of new problems with regards to the reliability of our electrical grid in terms of outages, cost, and life-time, forcing us to promptly deal with the challenging restructuring of our energy systems. Increased penetration of fluctuating renewable energy resources is a challenge for the electrical grid. Proposing solutions to deal with this problem also impacts the functionality of large generators. The power electronic generator interactions, multi-domain modelling, and reliable monitoring systems are examples of new challenges in this field. This book presents some new modelling methods and technologies for renewable energy generators including wind, ocean, and hydropower systems

    Environmental Design and Optimization of Modular Hydropower Plants

    Get PDF
    This research aimed to understand the pathways to cost-effective and sustainable low-head hydropower. Designing viable hydropower projects requires optimization across many economic, environmental, and social outcomes. However, existing run-of-river hydropower design models often focus on economic performance and customizing technologies for high-head diversion schemes. Standard modular hydropower is a new design approach that uses standardized rather than custom-designed technologies to achieve economies of scale. Oak Ridge National Laboratory established a conceptual outline for module classes based on functions, such as generation modules and fish passage modules, but further research was needed to identify how modules should be selected and operated for a site. Therefore, a new hydropower design model, called the waterSHED model, was created to incorporate multi-objective optimization strategies and design considerations specific to standard modular hydropower. The waterSHED model uses an object-oriented approach, heuristic optimization techniques, and a system of inter-disciplinary models to assess project feasibility and design tradeoffs. The model quantifies the non-power benefits of fish passage, sediment passage, and recreation passage by integrating existing and novel modeling approaches into an operation simulation. Two case studies were conducted to validate the model and help answer research questions related to 1) the cost-benefit tradeoffs of non-power modules, 2) the economic drivers of modular designs, and 3) the value of fish-safe designs. These case studies highlighted the potential of several technologies, such as fish-safe turbines and sediment sluice gates, to improve the environmental performance of projects with minimal impacts on generation. However, cost reductions are needed to overcome the economic and regulatory challenges of low-head projects, particularly for foundation and generation technologies. The object-oriented approach facilitates rapid integration of the innovations that will emerge to meet these challenges. This research helped modernize hydropower design thinking and provided valuable tools to the industry that will enable communities to meet clean electricity goals and protect riverine ecosystems

    Hydrolink 2017/1. Sensors

    Get PDF
    Topic: Sensor

    Novel Developments for Sustainable Hydropower

    Get PDF
    This open access book presents (selected) new and innovative developments for sustainable and fish-friendly hydropower. It offers unique insights into the challenges, practices and policies of hydropower developments across 8 European countries, providing examples from on-site studies and European-wide analyses. The case studies throughout the book are practical “real-world” examples, which are intended to serve as inspiration for anyone who would like to know more about how solutions for more sustainable hydropower production can be designed and implemented. Hydropower is an important renewable energy source, which, however, can also impact aquatic ecosystems, fish populations and hydro-morphology. EU and national water, environmental and energy legislation strive for sustainable energy and water resource management as well as the protection of important habitats and species. These have an effect on the requirements and decision making processes for hydropower planning, commissioning and operation. With a high variety of measures existing and site-specific conditions as well as national and EU level legal requirements to consider, it can be difficult to determine, what issues to address and which measures to implement

    Applications of Power Electronics:Volume 2

    Get PDF

    You are what you measure! But are we measuring it right? An empiric analysis of energy access metrics based on a multi-tier approach in Bangladesh

    Get PDF
    Measuring energy access through binary indicators is insufficient, and often, even misleading. In this work, the SE4ALL global tracking framework, and the recently introduced ESMAP multi-tier approach, is critically discussed analyzing questionnaire based primary data from rural Bangladesh. The performance of different energy interventions is evaluated using the new tier framework. The challenges in its application lie in reliable data collection, adequate gradation of indicators, and an effective algorithm for the tier assignment based on the specified set of attributes. The study showcases very high sensitivities to parameter changes, different algorithms, and data requirements. The results reveal a clear trade-off between capturing the multi-dimensionality of energy access and the simplicity of an easy to use global framework. Suggestions to improve the measuring approach are made and conclusions are drawn for possible implications of the tier framework for different energy service offers in the market. Strengths and weaknesses of the present measurement scheme are discussed and country specific results interpreted through targeted gap analysis for future policy advice

    Computer aided design of 3D of renewable energy platform for Togo's smart grid power system infrastructure

    Get PDF
    The global requirement for sustainable energy provision will become increasingly important over the next fifty years as the environmental effects of fossil fuel use become apparent. Therefore, the issues surrounding integration of renewable energy supplies need to be considered carefully. The focus of this work was the development of an innovative computer aided design of a 3 Dimensional renewable energy platform for Togo’s smart grid power system infrastructure. It demonstrates its validation for industrial, commercial and domestic applications. The Wind, Hydro, and PV system forming our 3 Dimensional renewable energy power generation systems introduces a new path for hybrid systems which extends the system capacities to include, a stable and constant clean energy supply, a reduced harmonic distortion, and an improved power system efficiency. Issues requiring consideration in high percentage renewable energy systems therefore includes the reliability of the supply when intermittent sources of electricity are being used, and the subsequent necessity for storage and back-up generation The adoption of Genetic algorithms in this case was much suited in minimizing the THD as the adoption of the CHB-MLI was ideal for connecting renewable energy sources with an AC grid. Cascaded inverters have also been proposed for use as the main traction drive in electric vehicles, where several batteries or ultra-capacitors are well suited to serve as separate DC sources. The simulation done in various non-linear load conditions showed the proportionality of an integral control based compensating cascaded passive filter thereby balancing the system even in non-linear load conditions. The measured total harmonic distortion of the source currents was found to be 2.36% thereby in compliance with IEEE 519-1992 and IEC 61000-3 standards for harmonics This work has succeeded in developing a more complete tool for analysing the feasibility of integrated renewable energy systems. This will allow informed decisions to be made about the technical feasibility of supply mix and control strategies, plant type, sizing and storage sizing, for any given area and range of supply options. The developed 3D renewable energy platform was examined and evaluated using CAD software analysis and a laboratory base mini test. The initial results showed improvements compared to other hybrid systems and their existing control systems. There was a notable improvement in the dynamic load demand and response, stability of the system with a reduced harmonic distortion. The derivatives of this research therefore proposes an innovative solution and a path for Togo and its intention of switching to renewable energy especially for its smart grid power system infrastructure. It demonstrates its validation for industrial, commercial and domestic applicationsN/

    SCADA and related technologies for irrigation district modernization

    Get PDF
    Presented at SCADA and related technologies for irrigation district modernization: a USCID water management conference on October 26-29, 2005 in Vancouver, Washington.Includes bibliographical references.Overview of Supervisory Control and Data Acquisition (SCADA) -- Total Channel Control™ - The value of automation in irrigation distribution systems -- Design and implementation of an irrigation canal SCADA -- All American Canal Monitoring Project -- Taking closed piping flowmeters to the next level - new technologies support trends in data logging and SCADA systems -- Real-time model-based dam automation: a case study of the Piute Dam -- Effective implementation of algorithm theory into PLCs -- Optimal fuzzy control for canal control structures -- SCADA over Zigbee™ -- Synchronous radio modem technology for affordable irrigation SCADA systems -- A suggested criteria for the selection of RTUs and sensors -- Irrigation canals in Spain: the integral process of modernization -- Ten years of SCADA data quality control and utilization for system management and planning modernization -- Moderately priced SCADA implementation -- Increasing peak power generation using SCADA and automation: a case study of the Kaweah River Power Authority -- Eastern Irrigation District canal automation and Supervisory Control and Data Acquisition (SCADA) -- Case study on design and construction of a regulating reservoir pumping station -- Saving water with Total Channel Control® in the Macalister Irrigation District, Australia -- Leveraging SCADA to modernize operations in the Klamath Irrigation Project -- A 2005 update on the installation of a VFD/SCADA system at Sutter Mutual Water Company -- Truckee Carson Irrigation District Turnout Water Measurement Program -- The myth of a "Turnkey" SCADA system and other lessons learned -- Canal modernization in Central California Irrigation District - case study -- Remote monitoring and operation at the Colorado River Irrigation District -- Web-based GIS decision support system for irrigation districts -- Using RiverWare as a real time river systems management tool -- Submerged venturi flume -- Ochoco Irrigation District telemetry case study -- Uinta Basin Replacement Project: a SCADA case study in managing multiple interests and adapting to loss of storage -- Training SCADA operators with real-time simulation -- Demonstration of gate control with SCADA system in Lower Rio Grande Valley, in Texas -- Incorporating sharp-crested weirs into irrigation SCADA systems

    The Global Riverine Hydrokinetic Resource

    Get PDF
    • …
    corecore