145 research outputs found

    Computational Modeling and Experimental Characterization of Pneumatically Driven Actuators for the Development of a Soft Robotic Arm

    Get PDF
    abstract: Soft Poly-Limb (SPL) is a pneumatically driven, wearable, soft continuum robotic arm designed to aid humans with medical conditions, such as cerebral palsy, paraplegia, cervical spondylotic myelopathy, perform activities of daily living. To support user's tasks, the SPL acts as an additional limb extending from the human body which can be controlled to perform safe and compliant mobile manipulation in three-dimensional space. The SPL is inspired by invertebrate limbs, such as the elephant trunk and the arms of the octopus. In this work, various geometrical and physical parameters of the SPL are identified, and behavior of the actuators that comprise it are studied by varying their parameters through novel quasi-static computational models. As a result, this study provides a set of engineering design rules to create soft actuators for continuum soft robotic arms by understanding how varying parameters affect the actuator's motion as a function of the input pressure. A prototype of the SPL is fabricated to analyze the accuracy of these computational models by performing linear expansion, bending and arbitrary pose tests. Furthermore, combinations of the parameters based on the application of the SPL are determined to affect the weight, payload capacity, and stiffness of the arm. Experimental results demonstrate the accuracy of the proposed computational models and help in understanding the behavior of soft compliant actuators. Finally, based on the set functional requirements for the assistance of impaired users, results show the effectiveness of the SPL in performing tasks for activities of daily living.Dissertation/ThesisMasters Thesis Mechanical Engineering 201

    Design, fabrication and control of soft robots

    Get PDF
    Conventionally, engineers have employed rigid materials to fabricate precise, predictable robotic systems, which are easily modelled as rigid members connected at discrete joints. Natural systems, however, often match or exceed the performance of robotic systems with deformable bodies. Cephalopods, for example, achieve amazing feats of manipulation and locomotion without a skeleton; even vertebrates such as humans achieve dynamic gaits by storing elastic energy in their compliant bones and soft tissues. Inspired by nature, engineers have begun to explore the design and control of soft-bodied robots composed of compliant materials. This Review discusses recent developments in the emerging field of soft robotics.National Science Foundation (U.S.) (Grant IIS-1226883

    Design and Fabrication of Fabric ReinforcedTextile Actuators forSoft Robotic Graspers

    Get PDF
    abstract: Wearable assistive devices have been greatly improved thanks to advancements made in soft robotics, even creation soft extra arms for paralyzed patients. Grasping remains an active area of research of soft extra limbs. Soft robotics allow the creation of grippers that due to their inherit compliance making them lightweight, safer for human interactions, more robust in unknown environments and simpler to control than their rigid counterparts. A current problem in soft robotics is the lack of seamless integration of soft grippers into wearable devices, which is in part due to the use of elastomeric materials used for the creation of most of these grippers. This work introduces fabric-reinforced textile actuators (FRTA). The selection of materials, design logic of the fabric reinforcement layer and fabrication method are discussed. The relationship between the fabric reinforcement characteristics and the actuator deformation is studied and experimentally verified. The FRTA are made of a combination of a hyper-elastic fabric material with a stiffer fabric reinforcement on top. In this thesis, the design, fabrication, and evaluation of FRTAs are explored. It is shown that by varying the geometry of the reinforcement layer, a variety of motion can be achieve such as axial extension, radial expansion, bending, and twisting along its central axis. Multi-segmented actuators can be created by tailoring different sections of fabric-reinforcements together in order to generate a combination of motions to perform specific tasks. The applicability of this actuators for soft grippers is demonstrated by designing and providing preliminary evaluation of an anthropomorphic soft robotic hand capable of grasping daily living objects of various size and shapes.Dissertation/ThesisMasters Thesis Biomedical Engineering 201

    Soft manipulators and grippers: A review

    Get PDF
    Soft robotics is a growing area of research which utilizes the compliance and adaptability of soft structures to develop highly adaptive robotics for soft interactions. One area in which soft robotics has the ability to make significant impact is in the development of soft grippers and manipulators. With an increased requirement for automation, robotics systems are required to perform task in unstructured and not well defined environments; conditions which conventional rigid robotics are not best suited. This requires a paradigm shift in the methods and materials used to develop robots such that they can adapt to and work safely in human environments. One solution to this is soft robotics, which enables soft interactions with the surroundings while maintaining the ability to apply significant force. This review paper assesses the current materials and methods, actuation methods and sensors which are used in the development of soft manipulators. The achievements and shortcomings of recent technology in these key areas are evaluated, and this paper concludes with a discussion on the potential impacts of soft manipulators on industry and society

    The waterbomb actuator: a new origami-based pneumatic soft muscle

    Get PDF
    This project introduces a new Pneumatic Artificial Muscle (PAM) design based on an origami structure. This artificial muscle is designed to operate at a very low range of pressures while being lightweight and compliant. It is also designed to reduce the pressure threshold and hysteresis problems present on other PAMs like the McKibben actuator. These properties are achieved thanks to a rearranging membrane based on the Waterbomb pattern, which can contract upon inflation while keeping the surface area constant. This concept has been tested using paper prototypes coated with silicone. We created thee different structures (4x8, 6x12 and 8x16 cells waterbomb actuators) from the same paper sheet (14x28cm2) and we actuated them under loads of 2, 4 and 7N. The 4x8 was discarded, but the 6x12 and 8x16 actuators contracted a maximum of 12.5% of the original length (≃10cm) while the operating pressures remained under 5Pa. We also proposed a novel approach to 3D print these actuators using a Stratasys Objet260 Connex3 3D printer. The main idea consists in creating a flat structure that can self-assemble using a technique known as 4D Printing. The pattern is printed as a flat sheet where the hinges are composites composed of an elastomeric material and shape memory polymer (SMP) fibers. These hinges can be activated through a thermomechanical process inducing a self-folding effect. Unfortunately, we were not able to verify this fabrication process due to the lack of material availability

    A 3D printed monolithic soft gripper with adjustable stiffness

    Get PDF
    Soft robotics has recently gained a significant momentum as a newly emerging field in robotics that focuses on biomimicry, compliancy and conformability with safety in near-human environments. Beside conventional fabrication methods, additive manufacturing is a primary technique to employ to fabricate soft robotic devices. We developed a monolithic soft gripper, with variable stiffness fingers, that was fabricated as a one-piece device. Negative pressure was used for the actuation of the gripper while positive pressure was used to vary the stiffness of the fingers of the gripper. Finger bending and gripping capabilities of the monolithic soft gripper were experimentally tested. Finite element simulation and experimental results demonstrate that the proposed monolithic soft gripper is fully compliant, low cost and requires an actuation pressure below -100 kPa
    corecore