486 research outputs found

    Transcutaneous Pulsed RF Energy Transfer Mitigates Tissue Heating in High Power Demand Implanted Device Applications: In Vivo and In Silico Models Results

    Get PDF
    This article presents the development of a power loss emulation (PLE) system device to study and find ways of mitigating skin tissue heating effects in transcutaneous energy transmission systems (TETS) for existing and next generation left ventricular assist devices (LVADs). Skin thermal profile measurements were made using the PLE system prototype and also separately with a TETS in a porcine model. Subsequent data analysis and separate computer modelling studies permit understanding of the contribution of tissue blood perfusion towards cooling of the subcutaneous tissue around the electromagnetic coupling area. A 2-channel PLE system prototype and a 2-channel TETS prototype were implemented for this study. The heating effects resulting from power transmission inefficiency were investigated under varying conditions of power delivery levels for an implanted device. In the part of the study using the PLE setup, the implanted heating element was placed subcutaneously 6–8 mm below the body surface of in vivo porcine model skin. Two operating modes of transmission coupling power losses were emulated: (a) conventional continuous transmission, and (b) using our proposed pulsed transmission waveform protocols. Experimental skin tissue thermal profiles were studied for various levels of LVAD power. The heating coefficient was estimated from the porcine model measurements (an in vivo living model and a euthanised cadaver model without blood circulation at the end of the experiment). An in silico model to support data interpretation provided reliable experimental and numerical methods for effective wireless transdermal LVAD energization advanced solutions. In the separate second part of the study conducted with a separate set of pigs, a two-channel inductively coupled RF driving system implemented wireless power transfer (WPT) to a resistive LVAD model (50 Ω) to explore continuous versus pulsed RF transmission modes. The RF-transmission pulse duration ranged from 30 ms to 480 ms, and the idle time (no-transmission) from 5 s to 120 s. The results revealed that blood perfusion plays an important cooling role in reducing thermal tissue damage from TETS applications. In addition, the results analysis of the in vivo, cadaver (R1Sp2) model, and in silico studies confirmed that the tissue heating effect was significantly lower in the living model versus the cadaver model due to the presence of blood perfusion cooling effects

    Power Approaches for Implantable Medical Devices.

    Get PDF
    Implantable medical devices have been implemented to provide treatment and to assess in vivo physiological information in humans as well as animal models for medical diagnosis and prognosis, therapeutic applications and biological science studies. The advances of micro/nanotechnology dovetailed with novel biomaterials have further enhanced biocompatibility, sensitivity, longevity and reliability in newly-emerged low-cost and compact devices. Close-loop systems with both sensing and treatment functions have also been developed to provide point-of-care and personalized medicine. Nevertheless, one of the remaining challenges is whether power can be supplied sufficiently and continuously for the operation of the entire system. This issue is becoming more and more critical to the increasing need of power for wireless communication in implanted devices towards the future healthcare infrastructure, namely mobile health (m-Health). In this review paper, methodologies to transfer and harvest energy in implantable medical devices are introduced and discussed to highlight the uses and significances of various potential power sources

    SenseBack - An implantable system for bidirectional neural interfacing

    Get PDF
    Chronic in-vivo neurophysiology experiments require highly miniaturized, remotely powered multi-channel neural interfaces which are currently lacking in power or flexibility post implantation. In this article, to resolve this problem we present the SenseBack system, a post-implantation reprogrammable wireless 32-channel bidirectional neural interfacing that can enable chronic peripheral electrophysiology experiments in freely behaving small animals. The large number of channels for a peripheral neural interface, coupled with fully implantable hardware and complete software flexibility enable complex in-vivo studies where the system can adapt to evolving study needs as they arise. In complementary ex-vivo and in-vivo preparations, we demonstrate that this system can record neural signals and perform high-voltage, bipolar stimulation on any channel. In addition, we demonstrate transcutaneous power delivery and Bluetooth 5 data communication with a PC. The SenseBack system is capable of stimulation on any channel with ±20 V of compliance and up to 315 μA of current, and highly configurable recording with per-channel adjustable gain and filtering with 8 sets of 10-bit ADCs to sample data at 20 kHz for each channel. To the best of our knowledge this is the first such implantable research platform offering this level of performance and flexibility post-implantation (including complete reprogramming even after encapsulation) for small animal electrophysiology. Here we present initial acute trials, demonstrations and progress towards a system that we expect to enable a wide range of electrophysiology experiments in freely behaving animals

    A Transcutaneous Data and Power Transfer System for Osteogenesis Monitoring Sensors

    Get PDF
    Implant devices are widely used in health care applications such as life support systems, patient rehabilitation devices and patient monitoring devices. Medical implants have enabled physicians to obtain relevant real time information regarding an organ, or a site of interest with in the body and suggest treatment accordingly. In some cases, the position of the implant within the body or threats of infections prevents wired communication techniques to extract information from the implant. Wireless communication is the alternative in such cases. Distraction osteogenesis is one such application where wireless communication can be established with callus growth monitoring sensors to obtain bone growth data and activate distraction device. As a solution for wireless communication, the computational design, fabrication and testing of a spiral antenna that can operate in the 401-406 MHz Medical Implant Communication Services (MICS) band is detailed. The proposed system uses ZL70103 MICS band transceiver from Microsemi Corporation and enables wireless communication with the implant. Antenna is tested in an in-vivo system that makes use of biomimetic material and pig femur bone to mimic an application environment. Power requirements for the implant actuator system that performs distraction cannot be satisfied by a single battery. Percutaneous wires for powering the implant poses threats of infection and frequent surgeries for battery replacement alters patient’s immune systems. Wireless charging is viable solution in this case. A short range inductive power transfer system prototype is designed and tested on a custom testbed to analyze the power transfer efficiency with change in distance

    Stepper microactuators driven by ultrasonic power transfer

    No full text
    Advances in miniature devices for biomedical applications are creating ever-increasing requirements for their continuous, long lasting, and reliable energy supply, particularly for implanted devices. As an alternative to bulky and cost inefficient batteries that require occasional recharging and replacement, energy harvesting and wireless power delivery are receiving increased attention. While the former is generally only suited for low-power diagnostic microdevices, the latter has greater potential to extend the functionality to include more energy demanding therapeutic actuation such as drug release, implant mechanical adjustment or microsurgery. This thesis presents a novel approach to delivering wireless power to remote medical microdevices with the aim of satisfying higher energy budgets required for therapeutic functions. The method is based on ultrasonic power delivery, the novelty being that actuation is powered by ultrasound directly rather than via piezoelectric conversion. The thesis describes a coupled mechanical system remotely excited by ultrasound and providing conversion of acoustic energy into motion of a MEMS mechanism using a receiving membrane coupled to a discrete oscillator. This motion is then converted into useful stepwise actuation through oblique mechanical impact. The problem of acoustic and mechanical impedance mismatch is addressed. Several analytical and numerical models of ultrasonic power delivery into the human body are developed. Major design challenges that have to be solved in order to obtain acceptable performance under specified operating conditions and with minimum wave reflections are discussed. A novel microfabrication process is described, and the resulting proof-of-concept devices are successfully characterized.Open Acces
    • …
    corecore