54 research outputs found

    Vehicle electrification: technologies, challenges and a global perspective for smart grids

    Get PDF
    Nowadays, due to economic and climate concerns, the private transportation sector is shifting for the vehicle electrification, mainly supported by electric and hybrid plug-in vehicles. For this new reality, new challenges about operation modes are emerging, demanding a cooperative and dynamic operation with the electrical power grid, guaranteeing a stable integration without omitting the power quality for the grid-side and for the vehicle-side. Besides the operation modes, new attractive and complementary technologies are offered by the vehicle electrification in the context of smart grids, which are valid for both on-board and off-board systems. In this perspective, this book chapter presents a global perspective and deals with challenges for the vehicle electrification, covering the key technologies toward a sustainable future. Among others, the flowing topics are covered: (1) Overview of power electronics structures for battery charging systems, including on-board and off-board systems; (2) State-of-the-art of communication technologies for application in the context of vehicular electrification, smart grids and smart homes; (3) Challenges and opportunities concerning wireless power transfer with bidirectional interface to the electrical grid; (4) Future perspectives about bidirectional power transfer between electric vehicles (vehicle-to-vehicle operation mode); (5) Unified technologies, allowing to combine functionalities of a bidirectional interface with the electrical grid and motor driver based on a single system; and (6) Smart grids and smart homes scenarios and accessible opportunities about operation modes.Fundação para a Ciência e Tecnologia (FCT

    100 kW Three-Phase Wireless Charger for EV: Experimental Validation Adopting Opposition Method

    Get PDF
    This paper presents the experimental validation, using the opposition method, of a high-power three-phase Wireless-Power-Transfer (WPT) system for automotive applications. The systemunder test consists of three coils with circular sector shape overlapped to minimize the mutualcross-coupling, a three-phase inverter at primary side and a three-phase rectifier at receiver side.In fact thanks to the delta configuration used to connect the coils of the electromagnetic structure,a three-phase Silicon Carbide (SiC) inverter is driving the transmitter side. The resonance tankcapacitors are placed outside of the delta configuration reducing in this way their voltage sizing. ThisWPT system is used as a 100 kW–85 kHz ultrafast battery charger for light delivery vehicle directlysupplied by the power grid of tramways. The adopted test-bench for the WPT charger consistsof adding circulating boost converter to the system under test to perform the opposition methodtechnique. The experimental results prove the effectiveness of the proposed structure together withthe validation of fully exploited simulation analysis. This is demonstrated by transferring 100 kWwith more than94Ü-to-DC efficiency over 50 mm air gap in aligned conditions. Furthermore,testing of Zero-Current and Zero-Voltage commutations are performed to test the performance of SiCtechnology employed

    Wireless Power Transfer by Using Magnetically Coupled Resonators

    Get PDF
    In this chapter, a wireless power transmission system based on magnetic resonance coupling circuit was carried out. Mathematical expressions of optimal coupling coefficients were examined with the coupling model. Equivalent circuit parameters were calculated with Maxwell 3D software, and then, the equivalent circuit was solved using MATLAB technical computing software. The transfer efficiency of the system was derived using the electrical parameters of the equivalent circuit. System efficiency was analyzed depending on the different air gap values for various characteristic impedances using PSIM circuit simulation software. Since magnetic resonance coupling involves creating a resonance and transferring the power without the radiation of electromagnetic waves, resonance frequency is a key parameter in system design. The aim of this research was to define the efficiency according to variations of coefficients in wireless power transfer (WPT) system. In order to do that, the calculation procedure of mutual inductance between two self-resonators is performed by Maxwell software. Equivalent circuit is solved in circuit simulator PSIM platform. The calculations show that using the parameters that are obtained by magnetic analysis can be used for the equivalent circuit which has the capability to provide the efficiency using electrical quantities. The chapter discusses the application of this approach to a coil excited by a sinusoidal voltage source and a receiver coil, which receives energy voltage and current. Both could be obtained to calculate the instantaneous power and efficiency. To do so, the waveforms for voltage and current were obtained and computed with the PSIM circuit simulator. As the air gap between the coils increased, the coupling between the coils was weakened. The impedance of the circuit varied as the air gap changed, affecting the power transfer efficiency. In order to determine the differences between the software programs, efficiency values were calculated using three kinds of software. And it is concluded that equivalent circuit analysis by means of numerical computing is proper to obtain the voltage and current waveforms. Correspondingly, transmission efficiency can be calculated using the electrical relations

    A Novel Variable Geometry based Planar Inductor Design for Wireless Charging Application

    Get PDF
    In this thesis, the performance, modelling and application of a planar electromagnetic coil are discussed. Due to the small size profiles and their non‐contact nature, planar coils are widely used due to their simple and basic design. The uncertain parameters have been identified and simulated using ANSYS that has been run utilising a newly developed MATLAB code. This code has made it possible to run thousands of trials without the need to manually input the various parameters for each run. This has facilitated the process of obtaining all the probable solutions within the defined range of properties. The optimum and robust design properties were then determined. The thesis discusses the experimentation and the finite element modelling (FEM) performed for developing the design of planar coils and used in wireless chargers. In addition, the thesis investigates the performance of various topologies of planar coils when they are used in wireless chargers. The ANSYS Maxwell FEM package has been used to analyse the models while varying the topologies of the coils. For this purpose, different models in FEM were constructed and then tested with topologies such as circular, square and hexagon coil configurations. The described methodology is considered as an effective way for obtaining maximum Power transfer efficiency (PTE) with a certain distance on planar coils with better performance. The explored designs studies are, namely: (1) Optimization of Planar Coil Using Multi-core, (2) planar coil with an Orthogonal Flux Guide, (3) Using the Variable Geometry in a Planar coil for an Optimised Performance by using the robust design method, (4) Design and Integration of Planar coil on wireless charger. In the first design study, the aim is to present the behaviour of a newly developed planar coil, built from a Mu-metal, via simulation. The structure consists of an excitation coil, sensing coils and three ferromagnetic cores 2 located on the top, middle and bottom sections of the coil in order to concentrate the field using the iterative optimisation technique. Magnetic materials have characteristics which allows them to influence the magnetic field in its environment. The second design study presents the optimal geometry and material selection for the planar with an Orthogonal Flux Guide. The study demonstrates the optimising of the materials and geometry of the coil that provides savings in terms of material usage as well as the employed electric current to produce an equivalent magnetic field. The third design study presents the variable geometry in a planar inductor to obtain the optimised performance. The study has provided the optimum and robust design parameters in terms of different topologies such as circular, square and hexagon coil configurations and then tested, Once the best topology is chosen based on performance. The originality of the work is evident through the randomisation of the parameters using the developed MATLAB code and the optimisation of the joint performance under defined conditions. Finally, the fourth design study presents the development of the planar coil applications. Three shapes of coils are designed and experimented to calculate the inductance and the maximum power transfer efficiency (PTW) over various spacing distances and frequency

    LYAPUNOV FUNCTION-BASED STABILIZING CONTROL SCHEME FOR WIRELESS POWER TRANSFER SYSTEMS WITH LCC COMPENSATION NETWORK

    Get PDF
    A stabilizing control scheme based on a Lyapunov function is proposed for wireless power transfer (or WPT) systems. A state-space model of the WPT system is developed and the Lyapunov function is formulated based on an energy equation of the system involving state variables. The internal resistance of a battery varies during charge and discharge. Therefore, if a WPT system is used to charge a battery, its output load will vary. Furthermore, the coupling coefficient between the transmitter (primary) and receiver (secondary) coils decreases when they are misaligned. Comparative case studies are conducted to verify the efficacy of the proposed controller in maintaining stability of the WPT system under load variation and acute misalignment of transmitter and receiver coils

    Electromagnetic field generated by a wireless energy transfer system: comparison of simulation to measurement

    Get PDF
    This paper presents a wireless energy transfer system operating at the frequency values of kHz order: modeling, simulation, and comparison with prototype measurement results. Wireless energy transfer system model using finite element method was carried out to simulate the electric field and the magnetic flux density for different air gap sizes between the transmitter and the receiver coils. Results are presented and compared with the electromagnetic emission measurements radiated by the wireless energy transfer system prototype. The electric field comparison between the simulated and the prototype measurement values shows an error of roughly 8.7%. In the recent years, the interest in the wireless energy transfer technology, especially for electric vehicles batteries charging, is rapidly increasing. As a result of the increasing application of this technology in the industrial and consumer electronic products, more concerns are raised about the electromagnetic compatibility, since the wireless energy transfer systems produce electromagnetic emissions in the surrounding environment

    Design and efficiency analysis of an LCL Capacitive Power Transfer system with Load-Independent ZPA

    Get PDF
    This paper proposes a design procedure of an LCL compensation circuit for a capacitive power transfer (CPT) system. The design enables the achievement of load independent zero phase angle (ZPA) operation in order to increase the overall efficiency of the system by using a minimum number of compensation components. The proposed approach is supported and validated by circuital simulations and confirmed by the results of experimental tests carried out on a specifically designed prototype

    Wireless power transfer for electric vehicle

    Get PDF
    Wireless Power Transfer (WPT) systems transfer electric energy from a source to a load without any wired connection. WPTs are attractive for many industrial applications because of their advantages compared to the wired counterpart, such as no exposed wires, ease of charging, and fearless transmission of power in adverse environmental conditions. Adoption of WPTs to charge the on-board batteries of an electric vehicle (EV) has got attention from some companies, and efforts are being made for development and improvement of the various associated topologies. WPT is achieved through the affordable inductive coupling between two coils termed as transmitter and receiver coil. In EV charging applications, transmitter coils are buried in the road and receiver coils are placed in the vehicle. Inductive WPT of resonant type is commonly used for medium-high power transfer applications like EV charging because it exhibits a greater efficiency. This thesis refers to a WPT system to charge the on-board batteries of an electric city-car considered as a study case. The electric city-car uses four series connected 12V, 100A•h VRLA batteries and two in-wheel motors fitted in the rear wheels, each of them able to develop a peak power of 4 kW to propel the car. The work done has been carried out mainly in three different stages; at first an overview on the wired EV battery chargers and the charging methodologies was carried out. Afterwards, background of different WPT technologies are discussed; a full set of Figures of Merit (FOM) have been defined and are used to characterize the resonant WPTs to the variations in resistive load and coupling coefficient. In the second stage, the WPT system for the study case has been designed. In the third stage, a prototypal of the WPT system has been developed and tested. Design of the WPT system is started by assessing the parameters of the various sections and by estimating the impact of the parameters of the system on its performance. The design process of the coil-coupling has come after an analysis of different structures for the windings, namely helix and spiral, and different shapes for the magnetic core; further to the preliminary results that have shown the advantages of the spiral structure, a more detailed analysis has then been executed on this structure. The coil design has encompassed the determination of the inductive parameters of the two-coil coupling as a function of the coil distance and axial misalignment. Both the analysis and the design was assisted by a FEM-approach based on the COMSOL code. Design of the power supply stages of the WPT system has consisted of the assessment of values and ratings of a) the capacitors that make resonant the coil-coupling, b) the power devices of the PFC rectifier and of the high frequency inverter (HF) that feeds the transmitting coil, c) the power devices of the converters supplied by the receiver coil: the rectifier diode and the in-cascade chopper that feeds the battery in a controlled way. For the converters that operate at high frequency (inverter and the rectifier in the receiver section), power electronic devices of the latest generation (the so-called Wide Band Gap (WBG) devices) have been used in order to maximize the efficiency of the WPT system. A prototypal WPT battery charger was arranged by using available cards with the power and signal circuits. Relevant experimental activities were: a) measurement of the parameters of the coils, b) desk assembling of the prototype, and c) conducting tests to verify proper operation of the prototype. The thesis work includes also a brief overview of i) emerging topics on WPT systems such as on-line electric vehicle (OLEV), ii) shielding of the magnetic fields produced by a WPT system, and iii) standards on WPT operation. These three issues play a significant role in the advancement of the WPT technology. The thesis work has been carried out at the Laboratory of “Electric systems for automation and automotive” headed by Prof. Giuseppe Buja. The laboratory belongs to the Department of Industrial Engineering of the University of Padova, Italy

    Cost Effective, Highly Efficient Wireless Power Transfer Systems for EV Battery Charging

    Get PDF
    The impact of changing inner diameter of wireless power transfer (WPT) coils on coupling coefficient is studied. It is demonstrated that at a certain outer and inner coil diameter, turn space variation has minor effect on the coupling coefficient. Next, two compensation networks, namely primary LCC and secondary LCC, which offer load-independent voltage transfer ratio and zero voltage switching for WPT, are presented. For both compensation networks, the condition for having zero voltage switching operation are derived. In addition, load-independent voltage transfer ratio (VTR) frequencies are obtained and VTR at each frequency is derived. Then, required equations for calculation of WPT system efficiency based on its equivalent circuit are presented. Eventually, by defining a time-weighted transfer average efficiency (TWTAE), and based on measured values of resistance and inductance of a WPT prototype and experimental charging curve of a Li-ion battery, a design procedure for both compensation networks is proposed. The proposed design leads to high TWTAE as well as low material usage. Simulation and experimental results verify the superiority of proposed coil and compensation design compared to conventional one

    Inductive wireless power transmission for automotive applications

    Get PDF
    Technology has revolutionised all aspects of human life at all consecutive intervals and Fourth Industrial Revolution is no different. Daily transport and energy industries not only shape the future of a country’s economy, but also make the economy highly yielding due to recent advances. Electric vehicles (EV) have been rapidly invading the market share during recent years. The advancements in EV and enhanced market share demand EV charging, being more reliant on either conventional plug-in charging or wireless charging. Given the limitations within battery related apparatus such as escalating battery costs, higher weight and lower power density, wireless power transfer (WPT) is a novel state of the art technology in energising. WPT has remarkable characteristics such as enhanced flexibility, mobility, convenience and safety, indicating potential benefits, if it is adopted for EV with similar efficiency; for example, it can eliminate the use of charging cables. Despite the fact that the wireless charges for EV, have undergone significant development phase during the last decade, many design limitations are yet to be addressed. Although the technology has been commercially outgrown, key limitations such as limited efficiency over distance, limited driving range, vulnerability to misalignments, or positional offsets are yet to be researched. Moreover, although high system efficiency can be attained, the distance variations between the transmitter and receiver and the misalignments will impact the system efficiency. This thesis addresses the aforementioned limitations and design challenges of the magnetic resonance WPT system, and proposes a novel transmitter and receiver circuit and coil designs, to minimise the impact of distance variations and coil misplacement, reduce the size and improve charging performance. This thesis focusses on inductive wireless power transfer (IWPT) which is also referred to as magnetic resonance and reviews and contrasts other WPT mechanisms. Additionally, it presents a detailed mathematical analysis of inductive wireless power circuit model to obtain accurate modelling parameters. Two and four loop strongly coupled magnetic resonance (SCMR) wireless power systems have been mathematically analysed and their performance has been evaluated. A novel combined, conformal strongly coupled magnetic resonance system (CSCMR) has been combined with SCMR, in order to minimise the dimensions of the receiver and compensate the coupling factor due to distance variations between the transmitter and receiver. In the second phase, additional inductors were added to the existing loosely coupled system to obtain higher efficiencies over higher distances. The size of the system has significantly reduced due to the additional smaller transmitter and receiver inductor which were added to the existing system to achieve better performance. The validity of each design has been discussed via a set of simulations, and their measurements have been obtained via prototypes. Finally, a smart WPT charging system, consisting of six transmitter loops and a sensor network array, for an autonomous parking space was developed. The proposed method reduces the energy required for determining a car’s location, eventually increasing the performance of the charger
    corecore