2,269 research outputs found

    Optimizing the Performance of Directive-based Programming Model for GPGPUs

    Get PDF
    Accelerators have been deployed on most major HPC systems. They are considered to improve the performance of many applications. Accelerators such as GPUs have an immense potential in terms of high compute capacity but programming these devices is a challenge. OpenCL, CUDA and other vendor-specific models for accelerator programming definitely offer high performance, but these are low-level models that demand excellent programming skills; moreover, they are time consuming to write and debug. In order to simplify GPU programming, several directive-based programming models have been proposed, including HMPP, PGI accelerator model and OpenACC. OpenACC has now become established as the de facto standard. We evaluate and compare these models involving several scientific applications. To study the implementation challenges and the principles and techniques of directive- based models, we built an open source OpenACC compiler on top of a main stream compiler framework (OpenUH as a branch of Open64). In this dissertation, we present the required techniques to parallelize and optimize the applications ported with OpenACC programming model. We apply both user-level optimizations in the applications and compiler and runtime-driven optimizations. The compiler optimization focuses on the parallelization of reduction operations inside nested parallel loops. To fully utilize all GPU resources, we also extend the OpenACC model to support multiple GPUs in a single node. Our application porting experience also revealed the challenge of choosing good loop schedules. The default loop schedule chosen by the compiler may not produce the best performance, so the user has to manually try different loop schedules to improve the performance. To solve this issue, we developed a locality-aware auto-tuning framework which is based on the proposed memory access cost model to help the compiler choose optimal loop schedules and guide the user to choose appropriate loop schedules.Computer Science, Department o

    Using Graph Properties to Speed-up GPU-based Graph Traversal: A Model-driven Approach

    Get PDF
    While it is well-known and acknowledged that the performance of graph algorithms is heavily dependent on the input data, there has been surprisingly little research to quantify and predict the impact the graph structure has on performance. Parallel graph algorithms, running on many-core systems such as GPUs, are no exception: most research has focused on how to efficiently implement and tune different graph operations on a specific GPU. However, the performance impact of the input graph has only been taken into account indirectly as a result of the graphs used to benchmark the system. In this work, we present a case study investigating how to use the properties of the input graph to improve the performance of the breadth-first search (BFS) graph traversal. To do so, we first study the performance variation of 15 different BFS implementations across 248 graphs. Using this performance data, we show that significant speed-up can be achieved by combining the best implementation for each level of the traversal. To make use of this data-dependent optimization, we must correctly predict the relative performance of algorithms per graph level, and enable dynamic switching to the optimal algorithm for each level at runtime. We use the collected performance data to train a binary decision tree, to enable high-accuracy predictions and fast switching. We demonstrate empirically that our decision tree is both fast enough to allow dynamic switching between implementations, without noticeable overhead, and accurate enough in its prediction to enable significant BFS speedup. We conclude that our model-driven approach (1) enables BFS to outperform state of the art GPU algorithms, and (2) can be adapted for other BFS variants, other algorithms, or more specific datasets

    A Survey of Parallel Data Mining

    Get PDF
    With the fast, continuous increase in the number and size of databases, parallel data mining is a natural and cost-effective approach to tackle the problem of scalability in data mining. Recently there has been a considerable research on parallel data mining. However, most projects focus on the parallelization of a single kind of data mining algorithm/paradigm. This paper surveys parallel data mining with a broader perspective. More precisely, we discuss the parallelization of data mining algorithms of four knowledge discovery paradigms, namely rule induction, instance-based learning, genetic algorithms and neural networks. Using the lessons learned from this discussion, we also derive a set of heuristic principles for designing efficient parallel data mining algorithms
    • …
    corecore