309,606 research outputs found

    Software Engineering for Self-Adaptive Systems: A second Research Roadmap

    Get PDF
    The goal of this roadmap paper is to summarize the state of-the-art and identify research challenges when developing, deploying and managing self-adaptive software systems. Instead of dealing with a wide range of topics associated with the field, we focus on four essential topics of self-adaptation: design space for adaptive solutions, processes, from centralized to decentralized control, and practical run-time verification and validation. For each topic, we present an overview, suggest future directions, and focus on selected challenges. This paper complements and extends a previous roadmap on software engineering for self-adaptive systems published in 2009 covering a different set of topics, and reflecting in part on the previous paper. This roadmap is one of the many results of the Dagstuhl Seminar 10431 on Software Engineering for Self-Adaptive Systems, which took place in October 2010

    Engineering Trustworthy Self-Adaptive Software with Dynamic Assurance Cases

    Get PDF
    Building on concepts drawn from control theory, self-adaptive software handles environmental and internal uncertainties by dynamically adjusting its architecture and parameters in response to events such as workload changes and component failures. Self-adaptive software is increasingly expected to meet strict functional and non-functional requirements in applications from areas as diverse as manufacturing, healthcare and finance. To address this need, we introduce a methodology for the systematic ENgineering of TRUstworthy Self-adaptive sofTware (ENTRUST). ENTRUST uses a combination of (1) design-time and runtime modelling and verification, and (2) industry-adopted assurance processes to develop trustworthy self-adaptive software and assurance cases arguing the suitability of the software for its intended application. To evaluate the effectiveness of our methodology, we present a tool-supported instance of ENTRUST and its use to develop proof-of-concept self-adaptive software for embedded and service-based systems from the oceanic monitoring and e-finance domains, respectively. The experimental results show that ENTRUST can be used to engineer self-adaptive software systems in different application domains and to generate dynamic assurance cases for these systems

    Prototype of Fault Adaptive Embedded Software for Large-Scale Real-Time Systems

    Get PDF
    This paper describes a comprehensive prototype of large-scale fault adaptive embedded software developed for the proposed Fermilab BTeV high energy physics experiment. Lightweight self-optimizing agents embedded within Level 1 of the prototype are responsible for proactive and reactive monitoring and mitigation based on specified layers of competence. The agents are self-protecting, detecting cascading failures using a distributed approach. Adaptive, reconfigurable, and mobile objects for reliablility are designed to be self-configuring to adapt automatically to dynamically changing environments. These objects provide a self-healing layer with the ability to discover, diagnose, and react to discontinuities in real-time processing. A generic modeling environment was developed to facilitate design and implementation of hardware resource specifications, application data flow, and failure mitigation strategies. Level 1 of the planned BTeV trigger system alone will consist of 2500 DSPs, so the number of components and intractable fault scenarios involved make it impossible to design an `expert system' that applies traditional centralized mitigative strategies based on rules capturing every possible system state. Instead, a distributed reactive approach is implemented using the tools and methodologies developed by the Real-Time Embedded Systems group.Comment: 2nd Workshop on Engineering of Autonomic Systems (EASe), in the 12th Annual IEEE International Conference and Workshop on the Engineering of Computer Based Systems (ECBS), Washington, DC, April, 200

    Fundamental Approaches to Software Engineering

    Get PDF
    This open access book constitutes the proceedings of the 25th International Conference on Fundamental Approaches to Software Engineering, FASE 2022, which was held during April 4-5, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 17 regular papers presented in this volume were carefully reviewed and selected from 64 submissions. The proceedings also contain 3 contributions from the Test-Comp Competition. The papers deal with the foundations on which software engineering is built, including topics like software engineering as an engineering discipline, requirements engineering, software architectures, software quality, model-driven development, software processes, software evolution, AI-based software engineering, and the specification, design, and implementation of particular classes of systems, such as (self-)adaptive, collaborative, AI, embedded, distributed, mobile, pervasive, cyber-physical, or service-oriented applications

    The engineering of emergence in complex adaptive systems

    Get PDF
    Agent-oriented software engineering is a new software engineering paradigm that is ideally suited to the analysis and design of complex systems. Open distributed environments place a growing demand on complex systems to be adaptive as well. Complex systems that can learn from and adapt to dynamically changing environments are called complex adaptive systems. These systems are characterized by emergent behaviour caused by interactions between system components and the environment. Agent-oriented software engineering methodologies attempt to control emergence during analysis and design by engineering the complex system in such a way that the correct emergent behaviour results during run-time. In a complex adaptive system however, emergent behaviour cannot be predicted during analysis and design, as it evolves only after implementation. By restricting emergent behaviour, as is done in most agent-oriented software engineering approaches, a complex system cannot be fully adaptive as well. We propose the BaBe methodology that will enable a complex system to be adaptive by learning from its environment and modifying its behaviour during run-time. This methodology adds a run-time emergence model consisting of distributed Bayesian behaviour networks to the agent-oriented software engineering lifecycle. These networks are initialised by the human software engineer during analysis and design and deployed by Bayesian agencies (also complex adaptive systems). The Bayesian agents are simple, and collectively they implement distributed Bayesian behaviour networks. These networks, being specialized Bayesian networks, enable the Bayesian agents to collectively mine relationships between emergent behaviours and the interactions that caused them to emerge, in order to adapt the behaviour of the system. The agents are organized into heterarchies of agencies, where each agency activates one or more component behaviour depending on the inference in the underlying Bayesian behaviour network. These agencies assist the human software engineer to bridge the gap between the implementation and the understanding of emergent behaviour in complex adaptive systems. Due to the simplicity of the agents and the minimal communication amongst them, they can be implemented using a commercially available component architecture. We describe a prototype implementation of the Bayesian agencies using Sun’s Enterprise JavaBeans™ component architecture.Thesis (PhD (Computer Science))--University of Pretoria, 2005.Computer Scienceunrestricte

    An Adaptive Integration Architecture for Software Reuse

    Get PDF
    The problem of building large, reliable software systems in a controlled, cost-effective way, the so-called software crisis problem, is one of computer science\u27s great challenges. From the very outset of computing as science, software reuse has been touted as a means to overcome the software crisis issue. Over three decades later, the software community is still grappling with the problem of building large reliable software systems in a controlled, cost effective way; the software crisis problem is alive and well. Today, many computer scientists still regard software reuse as a very powerful vehicle to improve the practice of software engineering. The advantage of amortizing software development cost through reuse continues to be a major objective in the art of building software, even though the tools, methods, languages, and overall understanding of software engineering have changed significantly over the years. Our work is primarily focused on the development of an Adaptive Application Integration Architecture Framework. Without good integration tools and techniques, reuse is difficult and will probably not happen to any significant degree. In the development of the adaptive integration architecture framework, the primary enabling concept is object-oriented design supported by the unified modeling language. The concepts of software architecture, design patterns, and abstract data views are used in a structured and disciplined manner to established a generic framework. This framework is applied to solve the Enterprise Application Integration (EM) problem in the telecommunications operations support system (OSS) enterprise marketplace. The proposed adaptive application integration architecture framework facilitates application reusability and flexible business process re-engineering. The architecture addresses the need for modern businesses to continuously redefine themselves to address changing market conditions in an increasingly competitive environment. We have developed a number of Enterprise Application Integration design patterns to enable the implementation of an EAI framework in a definite and repeatable manner. The design patterns allow for integration of commercial off-the-shelf applications into a unified enterprise framework facilitating true application portfolio interoperability. The notion of treating application services as infrastructure services and using business processes to combine them arbitrarily provides a natural way of thinking about adaptable and reusable software systems. We present a mathematical formalism for the specification of design patterns. This specification constitutes an extension of the basic concepts from many-sorted algebra. In particular, the notion of signature is extended to that of a vector, consisting of a set of linearly independent signatures. The approach can be used to reason about various properties including efforts for component reuse and to facilitate complex largescale software development by providing the developer with design alternatives and support for automatic program verification

    The scenario coevolution paradigm: adaptive quality assurance for adaptive systems

    Get PDF
    Systems are becoming increasingly more adaptive, using techniques like machine learning to enhance their behavior on their own rather than only through human developers programming them. We analyze the impact the advent of these new techniques has on the discipline of rigorous software engineering, especially on the issue of quality assurance. To this end, we provide a general description of the processes related to machine learning and embed them into a formal framework for the analysis of adaptivity, recognizing that to test an adaptive system a new approach to adaptive testing is necessary. We introduce scenario coevolution as a design pattern describing how system and test can work as antagonists in the process of software evolution. While the general pattern applies to large-scale processes (including human developers further augmenting the system), we show all techniques on a smaller-scale example of an agent navigating a simple smart factory. We point out new aspects in software engineering for adaptive systems that may be tackled naturally using scenario coevolution. This work is a substantially extended take on Gabor et al. (International symposium on leveraging applications of formal methods, Springer, pp 137–154, 2018)

    Fundamental Approaches to Software Engineering

    Get PDF
    This open access book constitutes the proceedings of the 25th International Conference on Fundamental Approaches to Software Engineering, FASE 2022, which was held during April 4-5, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 17 regular papers presented in this volume were carefully reviewed and selected from 64 submissions. The proceedings also contain 3 contributions from the Test-Comp Competition. The papers deal with the foundations on which software engineering is built, including topics like software engineering as an engineering discipline, requirements engineering, software architectures, software quality, model-driven development, software processes, software evolution, AI-based software engineering, and the specification, design, and implementation of particular classes of systems, such as (self-)adaptive, collaborative, AI, embedded, distributed, mobile, pervasive, cyber-physical, or service-oriented applications
    • …
    corecore