544 research outputs found

    The SoftHand Pro: Translation from Robotic Hand to Prosthetic Prototype

    Get PDF
    This work presents the translation from a humanoid robotic hand to a prosthetic prototype and its first evaluation in a set of 9 persons with amputation. The Pisa/IIT SoftHand is an underactuated hand built on the neuroscientific principle of motor synergies enabling it to perform natural, human-like movements and mold around grasped objects with minimal control input. These features motivated the development of the SoftHand Pro, a prosthetic version of the SoftHand built to interface with a prosthetic socket. The results of the preliminary testing of the SoftHand Pro showed it to be a highly functional design with an intuitive control system. Present results warrant further testing to develop the SoftHand Pro

    Anthropomorphism Index of Mobility for Artificial Hands

    Get PDF
    The increasing development of anthropomorphic artificial hands makes necessary quick metrics that analyze their anthropomorphism. In this study, a human grasp experiment on the most important grasp types was undertaken in order to obtain an Anthropomorphism Index of Mobility (AIM) for artificial hands. The AIM evaluates the topology of the whole hand, joints and degrees of freedom (DoFs), and the possibility to control these DoFs independently. It uses a set of weighting factors, obtained from analysis of human grasping, depending on the relevance of the different groups of DoFs of the hand. The computation of the index is straightforward, making it a useful tool for analyzing new artificial hands in early stages of the design process and for grading human-likeness of existing artificial hands. Thirteen artificial hands, both prosthetic and robotic, were evaluated and compared using the AIM, highlighting the reasons behind their differences. The AIM was also compared with other indexes in the literature with more cumbersome computation, ranking equally different artificial hands. As the index was primarily proposed for prosthetic hands, normally used as nondominant hands in unilateral amputees, the grasp types selected for the human grasp experiment were the most relevant for the human nondominant hand to reinforce bimanual grasping in activities of daily living. However, it was shown that the effect of using the grasping information from the dominant hand is small, indicating that the index is also valid for evaluating the artificial hand as dominant and so being valid for bilateral amputees or robotic hands

    A Biomechanical Model for the Development of Myoelectric Hand Prosthesis Control Systems

    Get PDF
    Advanced myoelectric hand prostheses aim to reproduce as much of the human hand's functionality as possible. Development of the control system of such a prosthesis is strongly connected to its mechanical design; the control system requires accurate information on the prosthesis' structure and the surrounding environment, which can make development difficult without a finalized mechanical prototype. This paper presents a new framework for the development of electromyographic hand control systems, consisting of a prosthesis model based on the biomechanical structure of the human hand. The model's dynamic structure uses an ellipsoidal representation of the phalanges. Other features include underactuation in the fingers and thumb modeled with bond graphs, and a viscoelastic contact model. The model's functions are demonstrated by the execution of lateral and tripod grasps, and evaluated with regard to joint dynamics and applied forces. Finally, additions are suggested with which this model can be of use in mechanical design and patient training as well

    Design of a robotic hand with a biologically-inspired parallel actuation system for prosthetic applications

    Get PDF
    Trabajo presentado al 34th Annual Mechanisms and Robotics Conference celebrado en Quebec del 15 al 18 de agosto de 2010.This paper presents the design of a robotic hand for prosthetic applications. The main characteristic of this robotic hand is its biologically-inspired parallel actuation system, which is based on the behavior/strength space of the Flexor Digitorum Profundus (FDP) and the Flexor Digitorum Superficialis (FDS) muscles. The design separates the strength space of the FDS and FDP muscles into a lighter strength region where finer manipulation and general approach tasks are executed, and a higher strength region where the more robust grasps are achieved. Two parallel actuator types and kinematic structures are designed to complement the requirements of both strength space regions.This research was performed under an award/contract from Telemedicine Advanced Technology Research Center (TATRC), of the U.S. Army Medical Research and Materiel Command (USAMRMC) of the U.S. Department of Defense.Peer Reviewe

    Advancing the Underactuated Grasping Capabilities of Single Actuator Prosthetic Hands

    Get PDF
    The last decade has seen significant advancements in upper limb prosthetics, specifically in the myoelectric control and powered prosthetic hand fields, leading to more active and social lifestyles for the upper limb amputee community. Notwithstanding the improvements in complexity and control of myoelectric prosthetic hands, grasping still remains one of the greatest challenges in robotics. Upper-limb amputees continue to prefer more antiquated body-powered or powered hook terminal devices that are favored for their control simplicity, lightweight and low cost; however, these devices are nominally unsightly and lack in grasp variety. The varying drawbacks of both complex myoelectric and simple body-powered devices have led to low adoption rates for all upper limb prostheses by amputees, which includes 35% pediatric and 23% adult rejection for complex devices and 45% pediatric and 26% adult rejection for body-powered devices [1]. My research focuses on progressing the grasping capabilities of prosthetic hands driven by simple control and a single motor, to combine the dexterous functionality of the more complex hands with the intuitive control of the more simplistic body-powered devices with the goal of helping upper limb amputees return to more active and social lifestyles. Optimization of a prosthetic hand driven by a single actuator requires the optimization of many facets of the hand. This includes optimization of the finger kinematics, underactuated mechanisms, geometry, materials and performance when completing activities of daily living. In my dissertation, I will present chapters dedicated to improving these subsystems of single actuator prosthetic hands to better replicate human hand function from simple control. First, I will present a framework created to optimize precision grasping – which is nominally unstable in underactuated configurations – from a single actuator. I will then present several novel mechanisms that allow a single actuator to map to higher degree of freedom motion and multiple commonly used grasp types. I will then discuss how fingerpad geometry and materials can better grasp acquisition and frictional properties within the hand while also providing a method of fabricating lightweight custom prostheses. Last, I will analyze the results of several human subject testing studies to evaluate the optimized hands performance on activities of daily living and compared to other commercially available prosthesis

    The role of morphology of the thumb in anthropomorphic grasping : a review

    Get PDF
    The unique musculoskeletal structure of the human hand brings in wider dexterous capabilities to grasp and manipulate a repertoire of objects than the non-human primates. It has been widely accepted that the orientation and the position of the thumb plays an important role in this characteristic behavior. There have been numerous attempts to develop anthropomorphic robotic hands with varying levels of success. Nevertheless, manipulation ability in those hands is to be ameliorated even though they can grasp objects successfully. An appropriate model of the thumb is important to manipulate the objects against the fingers and to maintain the stability. Modeling these complex interactions about the mechanical axes of the joints and how to incorporate these joints in robotic thumbs is a challenging task. This article presents a review of the biomechanics of the human thumb and the robotic thumb designs to identify opportunities for future anthropomorphic robotic hands

    Design and Analysis of a Body-Powered Underactuated Prosthetic Hand

    Get PDF
    As affordable and efficient 3-D printers became widely available, researchers are focusing on developing prosthetic hands that are reasonably priced and effective at the same time. By allowing anyone with a 3-D printer to build their body powered prosthetic hands, many people could build their own prosthetic hand. However, one of the major problems with the current designs is the user must bend and hold their wrist in an awkward position to grasp an object. The primary goal of this thesis is to present the design process and analysis of a mechanical operated, underactuated prosthetic hand with a novel ratcheting mechanism that locks the finger automatically at a desired position. The prosthetic hand is composed of the following components: a frame for the hand and forearm, ratcheting mechanism, finger mount, rack, pawl and stopper for ratchet, cable, springs, rigidly supporting finger and a compliant finger. The compliant finger was manufactured using shape deposition manufacturing. The joints of the finger were made using PMC 780, polyurethane material, and the finger pads were made of Polydimethylsiloxane(PDMS). To estimate how a compliant finger behaves on the actual system with the ratcheting mechanism and how much force is required to operate this finger, the preshaping analysis was conducted. The preshaping analysis data was verified by loading and unloading weights to the tendon cable and taking pictures of the finger each time the cable force was varied. Then, the pictures were processed using MATLAB image processing tools to calculate joint angles. Additionally, the contact force analysis was performed to determine the effects of the contact location and finger joint angles on the magnitude of contact force given the tension of the cable. Using the contact force analysis, it would be possible to estimate how much load the hand can hold. Finally, the hand was tested to hold various shapes of objects to prove how well it can grasp. Based on the experiment, the hand had a higher success rate of grasping objects that are lightweight (less than 500g) and cylindrical or circular shaped

    Design of a robotic hand and simple EMG input controller with a biologically-inspired parallel actuation system for prosthetic applications

    Get PDF
    This paper presents the mechatronic design of a robotic hand for prosthetic applications. The main characteristic of this robotic hand is its biologically-inspired parallel actuation system, which is based on the behavior/strength space of the Flexor Digitorum Profundus (FDP) and the Flexor Digitorum Superficialis (FDS) muscles. The design separates the strength space of the FDS and FDP muscles into a lighter strength region where finer manipulation and general approach tasks are executed, and a higher strength region where the more robust grasps are achieved. Two parallel actuator types and kinematic structures are designed to complement the requirements of both strength space regions.This unique structure is intended to be driven by electromyographical (EMG) signals captured at the surface of the skin. The direct relation between signal and actuation system lends itself well to interpreting the EMG signals from the FDP and FDS muscles into effective task execution, with the goal of helping the user to achieve a good approximation of the full capabilities associated with the human hand, without compromising strength, dexterity, appearance, or weight; which are common issues associated with prosthetic hands. The designed finger’s capability of having a strength space similar to that of the FDS and FDP muscles is validated via direct inputs from a power supply and then via a controller using an actual EMG signal input from the human forearm. The controller is a simple feed forward system at this point in the research but provides the appropriate framework to integrate more elaborate control schemes and EMG signal conditioning as this portion of the research area matures.Peer ReviewedPostprint (author’s final draft
    • 

    corecore