549 research outputs found

    Additive manufacturing of glass with laser powder bed fusion

    Get PDF
    Its transparency, esthetic appeal, chemical inertness, and electrical resistivity make glass an excellent candidate for small‐ and large‐scale applications in the chemical, electronics, automotive, aerospace, and architectural industries. Additive manufacturing of glass has the potential to open new possibilities in design and reduce costs associated with manufacturing complex customized glass structures that are difficult to shape with traditional casting or subtractive methods. However, despite the significant progress in the additive manufacturing of metals, polymers, and ceramics, limited research has been undertaken on additive manufacturing of glass. In this study, a laser powder bed fusion method was developed for soda lime silica glass powder feedstock. Optimization of laser processing parameters was undertaken to define the processing window for creating three‐dimensional multilayer structures. These findings enable the formation of complex glass structures with micro‐ or macroscale resolution. Our study supports laser powder bed fusion as a promising method for the additive manufacturing of glass and may guide the formation of a new generation of glass structures for a wide range of applications

    Advances in materials strategies, circuit designs, and informatics for wearable, flexible and stretchable electronics with medical and robotic applications

    Get PDF
    The future of medical electronics should be flexible, stretchable and skin-integrated. While modern electronics become increasing smaller, faster and energy efficient, the designs remain bulky and rigid due to materials and processing limitations. The miniaturization of health monitoring devices in wearable form resembles a significant progress towards the next-generation medical electronics. However, there are still key challenges in these wearable electronics associated with medical-grade sensing precision, reliable wireless powering, and materials strategy for skin-integration. Here, I present a series of systematic studies from materials strategies, circuit design to signal processing on skin-mounted electronic wearable devices. Several types of Epidermal Electronic Systems (EES) develop applications in dermatology, cardiology, rehabilitation, and wireless powering. For skin hydration measurement, fundamental studies of electrode configurations and skin-electrode impedance reveal the optimal sensor design. Furthermore, wireless operation of hydration sensor was made possible with direct integration on skin, and on porous substrates that collect and analyze sweats. Additionally, I present an epidermal multi-functional sensing platform that could provide a control-feedback loop through electromyogram and current stimulation; and a mechano-acoustic device that could capture vibrations from muscle, heart, and throat as diagnostic tools or human-machine interface. I developed a modularized epidermal radio-frequency energy transfer epidermal device to eliminate batteries and power cables for wearable electronics. Finally, I present a clinical study that validates a commercialized ESS on patients with nerve disorders for electromyography monitoring during peripheral nerve and spinal cord surgeries
    corecore