4,146 research outputs found

    Development of canopy vigour maps using UAV for site-specific management during vineyard spraying process

    Get PDF
    Site-specific management of crops represents an important improvement in terms of efficiency and efficacy of the different labours, and its implementation has experienced a large development in the last decades, especially for field crops. The particular case of the spray application process for what are called “specialty crops” (vineyard, orchard fruits, citrus, olive trees, etc.)FI-DGR grant from Generalitat de Catalunya (2018 FI_B1 00083). Research and improvement of Dosaviña have been developed under LIFE PERFECT project: Pesticide Reduction using Friendly and Environmentally Controlled Technologies (LIFE17 ENV/ES/000205)This research was partially funded by the “Ajuts a les activitats de demostració (operació 01.02.01 de Transferència Tecnològica del Programa de desenvolupament rural de Catalunya 2014-2020)” and an FI-DGR grant from Generalitat de Catalunya (2018 FI_B1 00083). Research and improvement of Dosaviña have been developed under the LIFE PERFECT project: Pesticide Reduction using Friendly and Environmentally Controlled Technologies (LIFE17 ENV/ES/000205).This research was partially funded by the “Ajuts a les activitats de demostració (operació 01.02.01 de Transferència Tecnològica del Programa de desenvolupament rural de Catalunya 2014-2020)” and an FI-DGR grant from Generalitat de Catalunya (2018 FI_B1 00083). Research and improvement of Dosaviña have been developed under LIFE PERFECT project: Pesticide Reduction using Friendly and Environmentally Controlled Technologies (LIFE17 ENV/ES/000205)Postprint (updated version

    Assessment of the Accuracy of a Multi-Beam LED Scanner Sensor for Measuring Olive Canopies

    Get PDF
    MDPI. CC BYCanopy characterization has become important when trying to optimize any kind of agricultural operation in high-growing crops, such as olive. Many sensors and techniques have reported satisfactory results in these approaches and in this work a 2D laser scanner was explored for measuring canopy trees in real-time conditions. The sensor was tested in both laboratory and field conditions to check its accuracy, its cone width, and its ability to characterize olive canopies in situ. The sensor was mounted on a mast and tested in laboratory conditions to check: (i) its accuracy at different measurement distances; (ii) its measurement cone width with different reflectivity targets; and (iii) the influence of the target’s density on its accuracy. The field tests involved both isolated and hedgerow orchards, in which the measurements were taken manually and with the sensor. The canopy volume was estimated with a methodology consisting of revolving or extruding the canopy contour. The sensor showed high accuracy in the laboratory test, except for the measurements performed at 1.0 m distance, with 60 mm error (6%). Otherwise, error remained below 20 mm (1% relative error). The cone width depended on the target reflectivity. The accuracy decreased with the target density

    Advances in developing a new test method to assess spray drift potential from air blast sprayers

    Get PDF
    Drift is one of the most important issues to consider for realising sustainable pesticide sprays. This study proposes and tests an alternative methodology for quantifying the drift potential (DP) of air blast sprayers, trying to avoid the difficulties faced in conducting field trials according to the standard protocol (ISO 22866:2005). For this purpose, an ad hoc test bench designed for DP comparative measurements was used. The proposed methodology was evaluated in terms of robustness, repetitiveness and coherence by arranging a series of trials at two laboratories. Representative orchard and vineyard air blast sprayers in eight configurations (combination of two forward speeds, two air fan flow rates, and two nozzle types) were tested. The test bench was placed perpendicular to the spray track to collect the fraction of spray liquid remaining in the air after the spray process and potentially susceptible to drift out of the treated area. Downwind spray deposition curves were obtained and a new approach was proposed to calculate an index value of the DP estimation that could allow the differences among the tested configurations to be described. Results indicated that forward speed of 1.67 m/s allows better discrimination among configurations tested. Highest DP reduction, over 87.5%, was achieved using the TVI nozzles in combination with low air fan flow rate in both laboratories; conversely, the highest DP value was obtained with the ATR nozzles in combination with high air fan flow rate. Although the proposed method shows a promising potential to evaluate drift potential of different sprayer types and nozzles types used for bush and tree crops further research and tests are necessary to improve and validate this method.Postprint (published version

    Strategies for the optimization of the efficiency in the plant protection product applications in olive canopies

    Get PDF
    Pesticide applications are necessary to guarantee the proper development of crops and, therefore, to ensure the profitability for the farmer. However, their mismanagement in last years has led to important environmental problems, triggering the emergence of a generalized animosity towards these practices. The European Administration, by taking into account this social concern, has developed a restrictive legal framework to guarantee the sustainability of treatments through their rationalization. In the case of olive, a very important crop in Spain, this problem is especially critical because of three main reasons. First, it is very concentrated in the Guadalquivir river basin, what makes the negative impacts to be very intense in the area, Next, the lack of knowledge and training makes farmers and technicians to not to be able to properly plan the treatments, generally overdosing to ensure biological efficiency. Last, the traditional nature of this crop and their structural characteristics (big-sized trees with very irregular tree crown shapes, wide tree and row spacing, high slope conditions…) make it especially complex with respect to spray applications to the tree canopy. The objective of this thesis is to develop new strategies to increase the efficiency of pesticide applications to olive tree crowns, through the simultaneous action on three key lines: to determine the influence of the variations in the main working parameters on the application quality, to obtain a simple model to adjust the sprayed volume to the canopy characteristics and to test new solutions to adapt the spraying equipment to the canopy shape, These objectives are developed along four main chapters. In chapter II, the influence of the spray volume and the airflow rate on the efficiency, coverage, penetration and spray homogeneity is studied. The results show that it is appropriate to reduce these parameters with respect to those usually applied in the field, reducing in this way the applied volumes and the power needs in tractors. In chapter III, different manual canopy characterization methods are compared to the most accurate technology: a LiDAR scanner. It is demonstrated that manual methods are reliable and, therefore, they can be useful to farmers and technicians to make adjustments to the spray volumes to be applied. The Mean Vector method showed to be the most polyvalent for different olive plantation systems. In chapter IV, two trials were undertaken to determine the optimum specific spray volume (sprayed L per m3 canopy volume) in isolated trees. It was determined that the specific volume of 0.12 L · m-3 resulted in an optimum coverage, in addition to improve the homogeneity of deposition throughout the crown and the spray penetration. This finding can lead to an important reduction in the volumes to be applied by farmers. In chapter V, the development of three new air-assisted sprayers adapted to the particular conditions of traditional and intensive olive orchards is explained. Each one presents some particularities that make it to be more appropriate for one system or the other, but they all showed to have the potential to improve the efficiency of the conventional airblast sprayer. Coverage increases up to 61% were achieved with these new sprayers. Keywords: olive, working parameters, pesticides, spray volume, airflow rate, LiDAR, canopy characterization, dose adjustment, specific spray volume, prototype development.La aplicación de productos fitosanitarios resulta necesaria para el correcto desarrollo de los cultivos y, por tanto, para asegurar su rentabilidad. No obstante, su mala gestión en los últimos años ha llevado a la aparición de problemas medioambientales de gran calado, lo que ha propiciado que haya una animadversion generalizada contra esta práctica. La Administración europea se ha hecho eco de esta preocupación social y ha impulsado un restrictivo marco legal para garantizar la sostenibilidad de los tratamientos mediante su racionalización. El caso del olivar, un cultivo de gran importancia en España, es especialmente crítico por tres motivos: por una parte, el cultivo se halla muy concentrado en la Cuenca del río Guadalquivir, con lo que la importancia de los impactos es muy alta. En segundo lugar, la escasez de investigación y transferencia hace que los agricultores y técnicos difícilmente estén en condiciones de llevar a cabo sus tratamientos de forma segura, optando generalmente por la sobre-dosificación para garantizar su eficacia biológica. Por ultimo, su carácter tradicional y sus características estructurales (copas de gran dimensión y de forma muy irregular, amplios anchos de calle, alta pendiente…) lo hacen especialmente complejo de cara a la pulverización sobre la copa de los árboles. El objetivo de esta tesis es desarrollar nuevas estrategias para aumentar la eficiencia de las aplicaciones de fitosanitarios a la copa de los olivos, mediante la actuación simultánea sobre tres líneas clave: determinar la influencia de las variaciones en los principales parámetros de trabajo sobre la calidad de las aplicaciones, obtener un modelo simple para ajustar el volumen de caldo empleado a las características de la vegetación y ensayar nuevas soluciones para adaptar los equipos de pulverización a la forma de la copa de los árboles. Se establecen cuatro capítulos principales que desarrollan estos objetivos. En el capítulo II, se estudia la influencia del volumen de caldo y del caudal de aire en la eficiencia, cobertura, penetración y homogeneidad de la pulverización. Los resultados muestran que es deseable reducir estos parámetros respecto a los comúnmente empleados en el campo, reduciendo así los volúmenes aplicados y las necesidades de potencia en los tractores. En el capítulo III se comparan diversos métodos de caracterización del volumen de copa manuales con la tecnología más precisa disponible en la actualidad: el escáner LiDAR. Se muestra que los métodos manuales son precisos y, por tanto, pueden ser útiles a agricultores y técnicos para realizar ajustes sobre el volumen de caldo a aplicar. Se establece el método del ‘Mean Vector’ como el más polivalente para los diferentes tipos de olivar. En el capítulo IV se llevan a cabo dos ensayos para determinar el óptimo volumen de aplicación específico (L de caldo por m3 de volumen de copa) en árboles aislados. Se determina que el volumen de 0.12 L · m-3 resulta en un grado de cobertura óptimo, además de mejorar la homogeneidad en la copa y la penetración. Esto supone una importante reducción en los volúmenes a aplicar por parte de los agricultores. En el capítulo V se detalla el desarrollo de tres nuevos equipos de pulverización adaptados a las condiciones particulares del olivar tradicional e intensivo. Cada equipo presenta unas particularidades que hace que trabaje major en un sistema o en otro, pero mejoran en todo caso al equipo comercial en términos de eficiencia. Incrementos de cobertura de hasta el 61% pueden ser conseguidos con estos nuevos atomizadores

    Variable rate dosing in precision viticulture: Use of electronic devices to improve application efficiency

    Get PDF
    Two different spray application methods were compared in three vine varieties at different crop stages. A conventional spray application with a constant volume rate per unit ground area (1 ha(-1)) was compared with a variable rate application method designed to compensate electronically for measured variations in canopy dimensions. An air-blast sprayer with individual multi-nozzle spouts was fitted with three Ultrasonic sensors and three electro valves on one side, in order to modify the emitted flow rate of the nozzles according to the variability of canopy dimensions in real time. The Purpose of this prototype was to precisely apply the required amount of spray liquid and avoid over dosing. On average, a 58% saving in application volume was achieved with the variable rate method, obtaining similar or even better leaf deposits.This work was funded by the Spanish Ministry of Education and Science, and was part of research project AGL2007-66093-C04-02/AGR. We are grateful to Professor Jordi Valero from Universitat Politècnica de Catalunya for his help in the statistical analysis and Xavier Vidal director of the School of Viticulture “Mercè Rosell” at Espiells (Barcelona) for his help during the field experiments

    Evaluation of laser range-finder mapping for agricultural spraying vehicles

    Get PDF
    In this paper, we present a new application of laser range-finder sensing to agricultural spraying vehicles. The current generation of spraying vehicles use automatic controllers to maintain the height of the sprayer booms above the crop. However, these control systems are typically based on ultrasonic sensors mounted on the booms, which limits the accuracy of the measurements and the response of the controller to changes in the terrain, resulting in a sub-optimal spraying process. To overcome these limitations, we propose to use a laser scanner, attached to the front of the sprayer's cabin, to scan the ground surface in front of the vehicle and to build a scrolling 3d map of the terrain. We evaluate the proposed solution in a series of field tests, demonstrating that the approach provides a more detailed and accurate representation of the environment than the current sonar-based solution, and which can lead to the development of more efficient boom control systems
    corecore