481 research outputs found

    Digital Complex Correlator for a C-band Polarimetry survey

    Full text link
    The international Galactic Emission Mapping project aims to map and characterize the polarization field of the Milky Way. In Portugal it will cartograph the C-band sky polarized emission of the Northern Hemisphere and provide templates for map calibration and foreground control of microwave space probes like ESA Planck Surveyor mission. The receiver system is equipped with a novel receiver with a full digital back-end using an Altera Field Programmable Gate Array, having a very favorable cost/performance relation. This new digital backend comprises a base-band complex cross-correlator outputting the four Stokes parameters of the incoming polarized radiation. In this document we describe the design and implementation of the complex correlator using COTS components and a processing FPGA, detailing the method applied in the several algorithm stages and suitable for large sky area surveys.Comment: 15 pages, 10 figures; submitted to Experimental Astronomy, Springe

    FPGAs in Industrial Control Applications

    Get PDF
    The aim of this paper is to review the state-of-the-art of Field Programmable Gate Array (FPGA) technologies and their contribution to industrial control applications. Authors start by addressing various research fields which can exploit the advantages of FPGAs. The features of these devices are then presented, followed by their corresponding design tools. To illustrate the benefits of using FPGAs in the case of complex control applications, a sensorless motor controller has been treated. This controller is based on the Extended Kalman Filter. Its development has been made according to a dedicated design methodology, which is also discussed. The use of FPGAs to implement artificial intelligence-based industrial controllers is then briefly reviewed. The final section presents two short case studies of Neural Network control systems designs targeting FPGAs

    A Survey on FPGA-Based Sensor Systems: Towards Intelligent and Reconfigurable Low-Power Sensors for Computer Vision, Control and Signal Processing

    Get PDF
    The current trend in the evolution of sensor systems seeks ways to provide more accuracy and resolution, while at the same time decreasing the size and power consumption. The use of Field Programmable Gate Arrays (FPGAs) provides specific reprogrammable hardware technology that can be properly exploited to obtain a reconfigurable sensor system. This adaptation capability enables the implementation of complex applications using the partial reconfigurability at a very low-power consumption. For highly demanding tasks FPGAs have been favored due to the high efficiency provided by their architectural flexibility (parallelism, on-chip memory, etc.), reconfigurability and superb performance in the development of algorithms. FPGAs have improved the performance of sensor systems and have triggered a clear increase in their use in new fields of application. A new generation of smarter, reconfigurable and lower power consumption sensors is being developed in Spain based on FPGAs. In this paper, a review of these developments is presented, describing as well the FPGA technologies employed by the different research groups and providing an overview of future research within this field.The research leading to these results has received funding from the Spanish Government and European FEDER funds (DPI2012-32390), the Valencia Regional Government (PROMETEO/2013/085) and the University of Alicante (GRE12-17)

    FPGA implementation of an image recognition system based on tiny neural networks and on-line reconfiguration

    Get PDF
    Neural networks are widely used in pattern recognition, security applications and robot control. We propose a hardware architecture system; using Tiny Neural Networks (TNN) specialized in image recognition. The generic TNN architecture allows expandability by means of mapping several Basic units (layers) and dynamic reconfiguration; depending on the application specific demands. One of the most important features of Tiny Neural Networks (TNN) is their learning ability. Weight modification and architecture reconfiguration can be carried out at run time. Our system performs shape identification by the interpretation of their singularities. This is achieved by interconnecting several specialized TNN. The results of several tests, in different conditions are reported in the paper. The system detects accurately a test shape in almost all the experiments performed. The paper also contains a detailed description of the system architecture and the processing steps. In order to validate the research, the system has been implemented and was configured as a perceptron network with backpropagation learning and applied to the recognition of shapes. Simulation results show that this architecture has significant performance benefits
    • …
    corecore