5,537 research outputs found

    How can we make sense of smart technologies for sustainable agriculture? - A discussion paper

    Get PDF
    This paper discusses the challenges of assessing the benefits and risks of new digital technologies, so-called ‘smart technologies’ for sustainable agri-food systems. It builds on the results of a literature review that was embedded in a wider study on future options for (sustainable) farming systems in Germany. Following the concepts of Actor-Network-Theory, we can conceive of smart technologies in agriculture as networks that can only be understood in their entirety when considering the relationships with all actors involved: technology developers, users (farmers, consumers and others), data analysts, legal regulators, policy makers, and potential others. Furthermore, interaction of the technology and its implementers with nature, such as plants, entire landscapes, and animals, need to be taken into consideration. As a consequence, we have to deal with a highly complex system when assessing the technology – at a time where many of the relevant questions have not been sufficiently researched yet. Building on the FAO’s SAFA guidelines, the paper outlines criteria against which smart technologies could be assessed for their potential to contribute to a sustainable development of agri-food systems. These include aspects of governance, ecology, economy and social issues. We draw some tentative conclusions on the required framework conditions for implementation of digital technology, in particular from the perspective of sustainable agriculture. These are aimed at fuelling further discussion about the potentials and risks of the technology

    Intelligent Behavior of Autonomous Vehicles in Outdoor Environment

    Get PDF
    The objective of this PhD-project has been to develop and enhance the operational behaviour of autonomous or automated conventional machines under out-door conditions. This has included developing high-level planning measures for the maximisation of machine productivity as an important element in the continued efforts of planning and controlling resource inputs in both arable and high value crops farming. The methods developed generate the optimized coverage path for any field regardless of its complexity on 2D or 3D terrains without any human intervention and in a manner that minimizes operational time, skipped and overlapped areas, and fuel consumption. By applying the developed approaches, a reduction of more than 20% in consumed fossil fuel together with a corresponding reduction in the emissions of CO2 and other greenhouses is achievable.In this work, a software package for the autonomous navigation of field robotics over 2D and 3D field terrains and the optimization of field operations and machinery systems have been developed. A web-based version of the developed software package is currently under progress

    Towards the development of a smart flying sensor: illustration in the field of precision agriculture

    Get PDF
    Sensing is an important element to quantify productivity, product quality and to make decisions. Applications, such as mapping, surveillance, exploration and precision agriculture, require a reliable platform for remote sensing. This paper presents the first steps towards the development of a smart flying sensor based on an unmanned aerial vehicle (UAV). The concept of smart remote sensing is illustrated and its performance tested for the task of mapping the volume of grain inside a trailer during forage harvesting. Novelty lies in: (1) the development of a position-estimation method with time delay compensation based on inertial measurement unit (IMU) sensors and image processing; (2) a method to build a 3D map using information obtained from a regular camera; and (3) the design and implementation of a path-following control algorithm using model predictive control (MPC). Experimental results on a lab-scale system validate the effectiveness of the proposed methodology

    Evaluation of laser range-finder mapping for agricultural spraying vehicles

    Get PDF
    In this paper, we present a new application of laser range-finder sensing to agricultural spraying vehicles. The current generation of spraying vehicles use automatic controllers to maintain the height of the sprayer booms above the crop. However, these control systems are typically based on ultrasonic sensors mounted on the booms, which limits the accuracy of the measurements and the response of the controller to changes in the terrain, resulting in a sub-optimal spraying process. To overcome these limitations, we propose to use a laser scanner, attached to the front of the sprayer's cabin, to scan the ground surface in front of the vehicle and to build a scrolling 3d map of the terrain. We evaluate the proposed solution in a series of field tests, demonstrating that the approach provides a more detailed and accurate representation of the environment than the current sonar-based solution, and which can lead to the development of more efficient boom control systems

    Precision Agriculture Technology for Crop Farming

    Get PDF
    This book provides a review of precision agriculture technology development, followed by a presentation of the state-of-the-art and future requirements of precision agriculture technology. It presents different styles of precision agriculture technologies suitable for large scale mechanized farming; highly automated community-based mechanized production; and fully mechanized farming practices commonly seen in emerging economic regions. The book emphasizes the introduction of core technical features of sensing, data processing and interpretation technologies, crop modeling and production control theory, intelligent machinery and field robots for precision agriculture production

    Design and Development of an Autonomous System for Agricultural Tractor

    Get PDF
    This study describes the design and modification of a tractor for automatic control. The automated system developed for the unmanned tractor was for the purpose of master slave operation in the agricultural sector. In this study, an hydrostatic transmission of the Kubota tractor was selected as the research platform. Modifications were carried out in order to automate the manual control tractor. The automated system was capable to direct the tractor to the target location given by the user. The sensing system guides the tractor to move along the path determined by the controller based on the information from the sensors. The automated system was developed by combining of electromechanical system, multi-sensor integration and control software. The electromechanical system (electrohydraulic and electro-pneumatic) was used to control the gear, brake, steering and accelerator system. The integration of sensors (Ultrasonic sensor, range sensor, magnetic sensor, encoder and potentiometer) provided the surrounding information to the tractor controller. The controller consists of series I/O modules (ICP 17000) and also pair of radio modem for data transmission. The graphical user interface software to control the automated system was developed using the Visual Basic. The automated system developed for ignition, gear, brake, accelerator and steering systems can be control remotely through the use of Graphical User Interface (GUI). The GUI has features, which enable the user to monitor the tractor condition and movement of the tractor by referring to the simulation layer. The simtdation layer consist of pre-determined field map, scaled at lcm: 1m.The simulation movement of the tractor was configured to coordinate with the real tractor movement. The GUI also enables the user to use keyboard to control the tractor movement. The GUI has a capability to calculate the location of the given target location and plan the tractor movement to the target location and assist the tractor to avoid the obstacle in the tractor path

    Hortibot: Feasibility study of a plant nursing robot performing weeding operations – part IV

    Get PDF
    Based on the development of a robotic tool carrier (Hortibot) equipped with weeding tools, a feasibility study was carried out to evaluate the viability of this innovative technology. The feasibility was demonstrated through a targeted evaluation adapted to the obtainable knowledge on the system performance in horticulture. A usage scenario was designed to set the implementation of the robotic system in a row crop of seeded bulb onions considering operational and functional constraints in organic crop, production. This usage scenario together with the technical specifications of the implemented system provided the basis for the feasibility analysis, including a comparison with a conventional weeding system. Preliminary results show that the automation of the weeding tasks within a row crop has the potential of significantly reducing the costs and still fulfill the operational requirements set forth. The potential benefits in terms of operational capabilities and economic viability have been quantified. Profitability gains ranging from 20 to 50% are achievable through targeted applications. In general, the analyses demonstrate the operational and economic feasibility of using small automated vehicles and targeted tools in specialized production settings

    Development of an intelligent master-slave system between agricultural vehicles

    Get PDF
    This paper presents a method to develop an intelligent master-slave system between agricultural vehicles, which will enable a semi-autonomous agricultural vehicle (slave) to follow a leading tractor (master) with a given lateral and longitudinal offset. In our study not only the follow-up motions but also the site-specific control of the apparatus such as rear and front power lift was considered. In the first part of this paper the recent research works in the area autonomous farming were discussed and the restrictions of these research works were illustrated. In the second part an approach to construct a master-slave system between two agricultural vehicles was demonstrated. In the next part the mathematic modelling of this master-slave system and the simulation results about the control algorithm were demonstrated. Afterwards the result of a real field test was presented and the safety considerations about such an intelligent vehicle system were made
    corecore