3,312 research outputs found

    Creative design and modelling of large-range translation compliant parallel manipulators

    Get PDF
    Compliant parallel mechanisms/manipulators (CPMs) are parallel manipulators that transmit motion/load by deformation of their compliant members. Due to their merits such as the eliminated backlash and friction, no need for lubrication, reduced wear and noise, and monolithic configuration, they have been used in many emerging applications as scanning tables, bio-cell injectors, nano-positioners, and etc. How to design large-range CPMs is still a challenging issue. To meet the needs for large-range translational CPMs for high-precision motion stages, this thesis focuses on the systematic conceptual design and modelling of large-range translational CPMs with distributed-compliance. Firstly, several compliant parallel modules with distributed-compliance, such as spatial multi-beam modules, are identified as building blocks of translational CPMs. A normalized, nonlinear and analytical model is then derived for the spatial multi-beam modules to address the non-linearity of load-equilibrium equations. Secondly, a new design methodology for translational CPMs is presented. The main characteristic of the proposed design approach is not only to replace kinematic joints as in the literature, but also to replace kinematic chains with appropriate multiple degrees-of-freedom (DOF) compliant parallel modules. Thirdly, novel large-range translational CPMs are constructed using the proposed design methodology and identified compliant parallel modules. The proposed novel CPMs include, for example, a 1-DOF compliant parallel gripper with auto-adaptive grasping function, a stiffness-enhanced XY CPM with a spatial compliant leg, and an improved modular XYZ CPM using identical spatial double four-beam modules. Especially, the proposed XY CPM and XYZ CPM can achieve a 10mm’s motion range along each axis in the case studies. Finally, kinematostatic modelling of the proposed translational CPMs is presented to enable rapid performance characteristic analysis. The proposed analytical models are also compared with finite element analysis

    Design of 3-legged XYZ compliant parallel manipulators with minimised parasitic rotations

    Get PDF
    This paper deals with the design of 3-legged distributed-compliance XYZ compliant parallel manipulators (CPMs) with minimised parasitic rotations, based on the kinematically decoupled 3-PPPRR (P: prismatic joint, and R: revolute joint) and 3-PPPR translational parallel mechanisms (TPMs). The designs are firstly proposed using the kinematic substitution approach, with the help of the stiffness center (SC) overlapping based approach. This is done by an appropriate embedded arrangement so that all of the SCs associated with the passive compliant modules overlap at the point where all of the input forces applied at the input stages intersect. Kinematostatic modelling and characteristic analysis are then carried out for the proposed large-range 3-PPPRR XYZ CPM with overlapping SCs. The results from finite element analysis (FEA) are compared to the characteristics found for the developed analytical models, as are experimental testing results (primary motion) from the prototyped 3-PPPRR XYZ CPM with overlapping SCs. Finally, issues on large-range motion and dynamics of such designs are discussed, as are possible improvements of the actuated compliant P joint. It is shown that the potential merits of the designs presented here include a) minimised parasitic rotations by only using three identical compliant legs; b) compact configurations and small size due to the use of embedded designs; c) approximately kinematostatically decoupled designs capable of easy controls; and d) monolithic fabrication for each leg using existing planar manufacturing technologies such as electric discharge machining (EDM)

    Design and Control of Compliant Actuation Topologies for Energy-Efficient Articulated Robots

    Get PDF
    Considerable advances have been made in the field of robotic actuation in recent years. At the heart of this has been increased use of compliance. Arguably the most common approach is that of Series-Elastic Actuation (SEA), and SEAs have evolved to become the core component of many articulated robots. Another approach is integration of compliance in parallel to the main actuation, referred to as Parallel- Elastic Actuation (PEA). A wide variety of such systems has been proposed. While both approaches have demonstrated significant potential benefits, a number of key challenges remain with regards to the design and control of such actuators. This thesis addresses some of the challenges that exist in design and control of compliant actuation systems. First, it investigates the design, dynamics, and control of SEAs as the core components of next-generation robots. We consider the influence of selected physical stiffness on torque controllability and backdrivability, and propose an optimality criterion for impedance rendering. Furthermore, we consider disturbance observers for robust torque control. Simulation studies and experimental data validate the analyses. Secondly, this work investigates augmentation of articulated robots with adjustable parallel compliance and multi-articulated actuation for increased energy efficiency. Particularly, design optimisation of parallel compliance topologies with adjustable pretension is proposed, including multi-articulated arrangements. Novel control strategies are developed for such systems. To validate the proposed concepts, novel hardware is designed, simulation studies are performed, and experimental data of two platforms are provided, that show the benefits over state-of-the-art SEA-only based actuatio

    Conceptual designs of multi-degree of freedom compliant parallel manipulators composed of wire-beam based compliant mechanisms

    Get PDF
    This paper proposes conceptual designs of multi-degree(s) of freedom (DOF) compliant parallel manipulators (CPMs) including 3-DOF translational CPMs and 6-DOF CPMs using a building block based pseudo-rigid-body-model (PRBM) approach. The proposed multi-DOF CPMs are composed of wire-beam based compliant mechanisms (WBBCMs) as distributed-compliance compliant building blocks (CBBs). Firstly, a comprehensive literature review for the design approaches of compliant mechanisms is conducted, and a building block based PRBM is then presented, which replaces the traditional kinematic sub-chain with an appropriate multi-DOF CBB. In order to obtain the decoupled 3-DOF translational CPMs (XYZ CPMs), two classes of kinematically decoupled 3-PPPR (P: prismatic joint, R: revolute joint) translational parallel mechanisms (TPMs) and 3-PPPRR TPMs are identified based on the type synthesis of rigid-body parallel mechanisms, and WBBCMs as the associated CBBs are further designed. Via replacing the traditional actuated P joint and the traditional passive PPR/PPRR sub-chain in each leg of the 3-DOF TPM with the counterpart CBBs (i.e. WBBCMs), a number of decoupled XYZ CPMs are obtained by appropriate arrangements. In order to obtain the decoupled 6-DOF CPMs, an orthogonally-arranged decoupled 6-PSS (S: spherical joint) parallel mechanism is first identified, and then two example 6-DOF CPMs are proposed by the building block based PRBM method. It is shown that, among these designs, two types of monolithic XYZ CPM designs with extended life have been presented

    A novel actuator-internal micro/nano positioning stage with an arch-shape bridge type amplifier

    Get PDF
    This paper presents a novel actuator-internal two degree-of-freedom (2-DOF) micro/nano positioning stage actuated by piezoelectric (PZT) actuators, which can be used as a fine actuation part in dual-stage system. To compensate the positioning error of coarse stage and achieve a large motion stroke, a symmetrical structure with an arch-shape bridge type amplifier based on single notch circular flexure hinges is proposed and utilized in the positioning stage. Due to the compound bridge arm configuration and compact flexure hinge structure, the amplification mechanism can realize high lateral stiffness and compact structure simultaneously, which is of great importance to protect PZT actuators. The amplification mechanism is integrated into the decoupling mechanism to improve compactness, and to produce decoupled motion in X- and Y- axes. An analytical model is established to explore the static and dynamic characteristics, and the geometric parameters are optimized. The performance of the positioning stage is evaluated through finite element analysis (FEA) and experimental test. The results indicate that the stage can implement 2-DOF decoupled motion with a travel range of 55.4×53.2 μm2, and the motion resolution is 8 nm. The stage can be used in probe tip-based micro/nano scratching

    Redesigning a flexural joint for metal-based additive manufacturing

    Get PDF
    Traditional rigid mechanisms exhibit problems such as assembly difficulties, friction and lubrification. Flexure-based compliant mechanisms, instead, are monolithic and gain their mobility thanks to proper design and materialdeflection. Designing and producing a compliant mechanism accurately and conveniently iscrucial. Thanks to its capabilities, additive manufacturing (AM) approach can provide optimal design and production and open the way to new, unexploited performances. This study investigates the redesign of a traditional cantilevered pivot. The redesign considers the performance improvements by exploiting the advantages of the AM based on laser powder bed fusion (L-PBF). The maximum tensileand compressive loads of the redesigned joint were identified. The structure was optimised by considering the most critical geometricalparameters in terms of mechanical performance. The geometricalfactorscomply with the design rules for L-PBF process, to maximise the dimensional and surface accuracies.The new approach to the flexural joint design presented in this paper provided higher mobility if compared with the traditional approach. Therefore, this study makes a major contribution to research on the production of precision alignment mechanisms and scientific instruments

    A novel voice coil motor-driven compliant micropositioning stage based on flexure mechanism

    Get PDF
    This paper presents a 2-degrees of freedom flexure-based micropositioning stage with a flexible decoupling mechanism. The stage is composed of an upper planar stage and four vertical support links to improve the out-of-plane stiffness. The moving platform is driven by two voice coil motors, and thus it has the capability of large working stroke. The upper stage is connected with the base through six double parallel four-bar linkages mechanisms, which are orthogonally arranged to implement the motion decoupling in the x and y directions. The vertical support links with serially connected hook joints are utilized to guarantee good planar motion with heavy-loads. The static stiffness and the dynamic resonant frequencies are obtained based on the theoretical analyses. Finite element analysis is used to investigate the characteristics of the developed stage. Experiments are carried out to validate the established models and the performance of the developed stage. It is noted that the developed stage has the capability of translational motion stroke of 1.8 mm and 1.78 mm in working axes. The maximum coupling errors in the x and y directions are 0.65% and 0.82%, respectively, and the motion resolution is less than 200 nm. The experimental results show that the developed stage has good capability for trajectory tracking
    • …
    corecore