134 research outputs found

    Improving Strength and Stability in Continuum Robots

    Get PDF
    Continuum robots, which are bio-inspired ’trunk-like’ robots, are characterized for their inherent compliance and range of motion. One of the key challenges in continuum robotics research is developing robots with sufficient strength and stability without adding additional weight or complexity to the design. The research conducted in this dissertation encompasses design and modeling strategies that address these challenges in strength and stability. This work improves three continuum robot actuation paradigms: (1) tendon-driven continuum robots (TDCR), (2) concentric tube robots (CTR), and (3) concentric push-pull robots (CPPR). The first chapter of contribution covers strategies for improving strength in TDCRs. The payload capacity and torsional stiffness of the robot can be improved by leveraging the geometry of the backbone design and tendon routing, with design choices experimentally validated on a robot prototype. The second chapter covers a new bending actuator, concentric precurved bellows (CPB), that are based upon CTR actuation. The high torsional stiffness of bellows geometry virtually eliminates the torsional compliance instability found in CTRs. Two bellows designs are developed for 3D printing and the mechanical properties of these designs are characterized through experiments on prototypes and in static finite element analysis. A torsionally rigid kinematic model is derived and validated on 3D printed prototypes. The third chapter of contribution covers the development and validation of a mechanics-based CPPR kinematics model. CPPRs are constructed from concentrically nested, asymmetrically patterned tubes that are fixed together at their distal tips. Relative translations between the tubes induces bending shapes from the robot. The model expands the possible design space of CPPRs by enabling the modeling of external loads, non-planar bending shapes, and CPPRs with more than two tubes. The model is validated on prototypes in loaded and unloaded experiments

    Innovative robot hand designs of reduced complexity for dexterous manipulation

    Get PDF
    This thesis investigates the mechanical design of robot hands to sensibly reduce the system complexity in terms of the number of actuators and sensors, and control needs for performing grasping and in-hand manipulations of unknown objects. Human hands are known to be the most complex, versatile, dexterous manipulators in nature, from being able to operate sophisticated surgery to carry out a wide variety of daily activity tasks (e.g. preparing food, changing cloths, playing instruments, to name some). However, the understanding of why human hands can perform such fascinating tasks still eludes complete comprehension. Since at least the end of the sixteenth century, scientists and engineers have tried to match the sensory and motor functions of the human hand. As a result, many contemporary humanoid and anthropomorphic robot hands have been developed to closely replicate the appearance and dexterity of human hands, in many cases using sophisticated designs that integrate multiple sensors and actuators---which make them prone to error and difficult to operate and control, particularly under uncertainty. In recent years, several simplification approaches and solutions have been proposed to develop more effective and reliable dexterous robot hands. These techniques, which have been based on using underactuated mechanical designs, kinematic synergies, or compliant materials, to name some, have opened up new ways to integrate hardware enhancements to facilitate grasping and dexterous manipulation control and improve reliability and robustness. Following this line of thought, this thesis studies four robot hand hardware aspects for enhancing grasping and manipulation, with a particular focus on dexterous in-hand manipulation. Namely: i) the use of passive soft fingertips; ii) the use of rigid and soft active surfaces in robot fingers; iii) the use of robot hand topologies to create particular in-hand manipulation trajectories; and iv) the decoupling of grasping and in-hand manipulation by introducing a reconfigurable palm. In summary, the findings from this thesis provide important notions for understanding the significance of mechanical and hardware elements in the performance and control of human manipulation. These findings show great potential in developing robust, easily programmable, and economically viable robot hands capable of performing dexterous manipulations under uncertainty, while exhibiting a valuable subset of functions of the human hand.Open Acces

    Planning dextrous robot hand grasps from range data, using preshapes and digit trajectories

    Get PDF
    Dextrous robot hands have many degrees of freedom. This enables the manipulation of objects between the digits of the dextrous hand but makes grasp planning substantially more complex than for parallel jaw grippers. Much of the work that addresses grasp planning for dextrous hands concentrates on the selection of contact sites to optimise stability criteria and ignores the kinematics of the hand. In more complete systems, the paradigm of preshaping has emerged as dominant. However, the criteria for the formation and placement of the preshapes have not been adequately examined, and the usefulness of the systems is therefore limited to grasping simple objects for which preshapes can be formed using coarse heuristics.In this thesis a grasp metric based on stability and kinematic feasibility is introduced. The preshaping paradigm is extended to include consideration of the trajectories that the digits take during closure from preshape to final grasp. The resulting grasp family is dependent upon task requirements and is designed for a set of "ideal" object-hand configurations. The grasp family couples the degrees of freedom of the dextrous hand in an anthropomorphic manner; the resulting reduction in freedom makes the grasp planning less complex. Grasp families are fitted to real objects by optimisation of the grasp metric; this corresponds to fitting the real object-hand configuration as close to the ideal as possible. First, the preshape aperture, which defines the positions of the fingertips in the preshape, is found by optimisation of an approximation to the grasp metric (which makes simplifying assumptions about the digit trajectories and hand kinematics). Second, the full preshape kinematics and digit closure trajectories are calculated to optimise the full grasp metric.Grasps are planned on object models built from laser striper range data from two viewpoints. A surface description of the object is used to prune the space of possible contact sites and to allow the accurate estimation of normals, which is required by the grasp metric to estimate the amount of friction required. A voxel description, built by ray-casting, is used to check for collisions between the object and the robot hand using an approximation to the Euclidean distance transform.Results are shown in simulation for a 3-digit hand model, designed to be like a simplified human hand in terms of its size and functionality. There are clear extensions of the method to any dextrous hand with a single thumb opposing multiple fingers and several different hand models that could be used are described. Grasps are planned on a wide variety of curved and polyhedral object

    Whole-Hand Robotic Manipulation with Rolling, Sliding, and Caging

    Get PDF
    Traditional manipulation planning and modeling relies on strong assumptions about contact. Specifically, it is common to assume that contacts are fixed and do not slide. This assumption ensures that objects are stably grasped during every step of the manipulation, to avoid ejection. However, this assumption limits achievable manipulation to the feasible motion of the closed-loop kinematic chains formed by the object and fingers. To improve manipulation capability, it has been shown that relaxing contact constraints and allowing sliding can enhance dexterity. But in order to safely manipulate with shifting contacts, other safeguards must be used to protect against ejection. “Caging manipulation,” in which the object is geometrically trapped by the fingers, can be employed to guarantee that an object never leaves the hand, regardless of constantly changing contact conditions. Mechanical compliance and underactuated joint coupling, or carefully chosen design parameters, can be used to passively create a caging grasp – protecting against accidental ejection – while simultaneously manipulating with all parts of the hand. And with passive ejection avoidance, hand control schemes can be made very simple, while still accomplishing manipulation. In place of complex control, better design can be used to improve manipulation capability—by making smart choices about parameters such as phalanx length, joint stiffness, joint coupling schemes, finger frictional properties, and actuator mode of operation. I will present an approach for modeling fully actuated and underactuated whole-hand-manipulation with shifting contacts, show results demonstrating the relationship between design parameters and manipulation metrics, and show how this can produce highly dexterous manipulators

    Optimal Design of Beam-Based Compliant Mechanisms via Integrated Modeling Frameworks

    Get PDF
    Beam-based Compliant Mechanisms (CMs) are increasingly studied and implemented in precision engineering due to their advantages over the classic rigid-body mechanisms, such as scalability and reduced need for maintenance. Straight beams with uniform cross section are the basic modules in several concepts, and can be analyzed with a large variety of techniques, such as Euler-Bernoulli beam theory, Pseudo-Rigid Body (PRB) method, chain algorithms (e.g.~the Chained Beam-Constraint Model, CBCM) and Finite Element Analysis (FEA). This variety is unquestionably reduced for problems involving special geometries, such as curved or spline beams, variable section beams, nontrivial shapes and, eventually, contacts between bodies. 3D FEA (solid elements) can provide excellent results but the solutions require high computational times. This work compares the characteristics of modern and computationally efficient modeling techniques (1D FEA, PRB method and CBCM), focusing on their applicability in nonstandard problems. In parallel, as an attempt to provide an easy-to-use environment for CM analysis and design, a multi-purpose tool comprising Matlab and modern Computer-Aided Design/Engineering (CAD/CAE) packages is presented. The framework can implement different solvers depending on the adopted behavioral models. Summary tables are reported to guide the designers in the selection of the most appropriate technique and software architecture. The second part of this work reports demonstrative case studies involving either complex shapes of the flexible members or contacts between the members. To improve the clarity, each example has been accurately defined so as to present a specific set of features, which leads in the choice of a technique rather than others. When available, theoretical models are provided for supporting the design studies, which are solved using optimization approaches. Software implementations are discussed throughout the thesis. Starting from previous works found in the literature, this research introduces novel concepts in the fields of constant force CMs and statically balanced CMs. Finally, it provides a first formulation for modeling mutual contacts with the CBCM. For validation purposes, the majority of the computed behaviors are compared with experimental data, obtained from purposely designed test rigs

    Kinematics and Robot Design II (KaRD2019) and III (KaRD2020)

    Get PDF
    This volume collects papers published in two Special Issues “Kinematics and Robot Design II, KaRD2019” (https://www.mdpi.com/journal/robotics/special_issues/KRD2019) and “Kinematics and Robot Design III, KaRD2020” (https://www.mdpi.com/journal/robotics/special_issues/KaRD2020), which are the second and third issues of the KaRD Special Issue series hosted by the open access journal robotics.The KaRD series is an open environment where researchers present their works and discuss all topics focused on the many aspects that involve kinematics in the design of robotic/automatic systems. It aims at being an established reference for researchers in the field as other serial international conferences/publications are. Even though the KaRD series publishes one Special Issue per year, all the received papers are peer-reviewed as soon as they are submitted and, if accepted, they are immediately published in MDPI Robotics. Kinematics is so intimately related to the design of robotic/automatic systems that the admitted topics of the KaRD series practically cover all the subjects normally present in well-established international conferences on “mechanisms and robotics”.KaRD2019 together with KaRD2020 received 22 papers and, after the peer-review process, accepted only 17 papers. The accepted papers cover problems related to theoretical/computational kinematics, to biomedical engineering and to other design/applicative aspects

    Industrial Robotics

    Get PDF
    This book covers a wide range of topics relating to advanced industrial robotics, sensors and automation technologies. Although being highly technical and complex in nature, the papers presented in this book represent some of the latest cutting edge technologies and advancements in industrial robotics technology. This book covers topics such as networking, properties of manipulators, forward and inverse robot arm kinematics, motion path-planning, machine vision and many other practical topics too numerous to list here. The authors and editor of this book wish to inspire people, especially young ones, to get involved with robotic and mechatronic engineering technology and to develop new and exciting practical applications, perhaps using the ideas and concepts presented herein

    Virtual articulation and kinematic abstraction in robotics

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Cataloged from PDF version of thesis.Includes bibliographical references (p. 279-292).This thesis presents the theory, implementation, novel applications, and experimental validation of a general-purpose framework for applying virtual modifications to an articulated robot, or virtual articulations. These can homogenize various aspects of a robot and its task environment into a single unified model which is both qualitatively high-level and quantitatively functional. This is the first framework designed specifically for the mixed real/virtual case. It supports arbitrary topology spatial kinematics, a broad catalog of joints, on-line structure changes, interactive kinostatic simulation, and novel kinematic abstractions, where complex subsystems are simplified with virtual replacements in both space and time. Decomposition algorithms, including a novel method of hierarchical subdivision, enable scaling to large closed-chain mechanisms with 100s of joints. Novel applications are presented in two areas of current interest: operating high- DoF kinematic manipulation and inspection tasks, and analyzing reliable kinostatic locomotion strategies based on compliance and proprioception. In both areas virtual articulations homogeneously model the robot and its task environment, and abstractions structure complex models. For high-DoF operations the operator attaches virtual joints as a novel interface metaphor to define task motion and to constrain coordinated motion (by virtually closing kinematic chains); virtual links can represent task frames or serve as intermediate connections for virtual joints. For compliant locomotion, virtual articulations model relevant compliances and uncertainties, and temporal abstractions model contact state evolution.(cont.) Results are presented for experiments with two separate robotic systems in each area. For high-DoF operations, NASA/JPL's 36 DoF ATHLETE performs previously challenging coordinated manipulation/inspection moves, and a novel large-scale (100s of joints) simulated modular robot is conveniently operated using spatial abstractions. For compliant locomotion, two experiments are analyzed that each achieve high reliability in uncertain tasks using only compliance and proprioception: a novel vertical structure climbing robot that is 99.8% reliable in over 1000 motions, and a mini-humanoid that steps up an uncertain height with 90% reliability in 80 trials. In both cases virtual articulation models capture the essence of compliant/proprioceptive strategies at a higher level than basic physics, and enable quantitative analyses of the limits of tolerable uncertainty that compare well to experiment.by Marsette Arthur Vona, III.Ph.D

    Kinematics and Robot Design IV, KaRD2021

    Get PDF
    This volume collects the papers published on the special issue “Kinematics and Robot Design IV, KaRD2021” (https://www.mdpi.com/journal/robotics/special_issues/KaRD2021), which is the forth edition of the KaRD special-issue series, hosted by the open-access journal “MDPI Robotics”. KaRD series is an open environment where researchers can present their works and discuss all the topics focused on the many aspects that involve kinematics in the design of robotic/automatic systems. Kinematics is so intimately related to the design of robotic/automatic systems that the admitted topics of the KaRD series practically cover all the subjects normally present in well-established international conferences on “mechanisms and robotics”. KaRD2021, after the peer-review process, accepted 12 papers. The accepted papers cover some theoretical and many design/applicative aspects

    Graphical modelling of modular machines

    Get PDF
    This research is aimed at advancing machine design through specifying and implementing (in "proof of concept" form) a set of tools which graphically model modular machines. The tools allow mechanical building elements (or machine modules) to be selected and configured together in a highly flexible manner so that operation of the chosen configuration can be simulated and performance properties evaluated. Implementation of the tools has involved an extension in capability of a proprietary robot simulation system. This research has resulted in a general approach to graphically modelling manufacturing machines built from modular elements. A focus of study has been on a decomposition of machine functionality leading to the establishment of a library of modular machine primitives. This provides a useful source of commonly required machine building elements for use by machine designers. Study has also focussed on the generation of machine configuration tools which facilitate the construction of a simulation model and ultimately the physical machine itself. Simulation aspects of machine control are also considered which depict methods of manipulating a machine model in the simulation phase. In addition methods of achieving machine programming have been considered which specify the machine and its operational tasks. Means of adopting common information data structures are also considered which can facilitate interfacing with other systems, including the physical machine system constructed as an issue of the simulation phase. Each of these study areas is addressed in its own context, but collectively they provide a means of creating a complete modular machine design environment which can provide significant assistance to machine designers. Part of the methodology employed in the study is based on the use of the discrete event simulation technique. To easily and effectively describe a modular machine and its activity in a simulation model, a hierarchical ring and tree data structure has been designed and implemented. The modularity and reconfigurability are accommodated by the data structure, and homogeneous transformations are adopted to determine the spatial location and orientation of each of the machine elements. A three-level machine task programming approach is used to describe the machine's activities. A common data format method is used to interface the machine design environment with the physical machine and other building blocks of manufacturing systems (such as CAD systems) where systems integration approaches can lead to enhanced product realisation. The study concludes that a modular machine design environment can be created by employing the graphical simulation approach together with a set of comprehensive configuration. tools. A generic framework has been derived which outlines the way in which machine design environments can be constructed and suggestions are made as to how the proof of concept design environment implemented in this study can be advanced
    • 

    corecore