4,958 research outputs found

    Optimization study of high power static inverters and converters Final report

    Get PDF
    Optimization study and basic performance characteristics for conceptual designs for high power static inverter

    Solar Photovoltaic and Thermal Energy Systems: Current Technology and Future Trends

    Get PDF
    Solar systems have become very competitive solutions for residential, commercial, and industrial applications for both standalone and grid connected operations. This paper presents an overview of the current status and future perspectives of solar energy (mainly photovoltaic) technology and the required conversion systems. The focus in the paper is put on the current technology, installations challenges, and future expectations. Various aspects related to the global solar market, the photovoltaic (PV) modules cost and technology, and the power electronics converter systems are addressed. Research trends and recommendations for each of the PV system sectors are also discussed.Junta de Andalucía P11-TIC-7070Ministerio de Ciencia e Innovación TEC2016-78430-

    Hybrid and modular multilevel converter designs for isolated HVDC–DC converters

    Get PDF
    Efficient medium and high-voltage dc-dc conversion is critical for future dc grids. This paper proposes a hybrid multilevel dc-ac converter structure that is used as the kernel of dc-dc conversion systems. Operation of the proposed dc-ac converter is suited to trapezoidal ac-voltage waveforms. Quantitative and qualitative analyses show that said trapezoidal operation reduces converter footprint, active and passive components' size, and on-state losses relative to conventional modular multilevel converters. The proposed converter is scalable to high voltages with controllable ac-voltage slope; implying tolerable dv/dt stresses on the converter transformer. Structural variations of the proposed converter with enhanced modularity and improved efficiency will be presented and discussed with regards to application in front-to-front isolated dc-dc conversion stages, and in light of said trapezoidal operation. Numerical results provide deeper insight of the presented converter designs with emphasis on system design aspects. Results obtained from a proof-of-concept 1-kW experimental test rig confirm the validity of simulation results, theoretical analyses, and simplified design equations presented in this paper. - 2013 IEEE.Scopu

    The ac power system testbed

    Get PDF
    The object of this program was to design, build, test, and deliver a high frequency (20 kHz) Power System Testbed which would electrically approximate a single, separable power channel of an IOC Space Station. That program is described, including the technical background, and the results are discussed showing that the major assumptions about the characteristics of this class of hardware (size, mass, efficiency, control, etc.) were substantially correct. This testbed equipment was completed and delivered and is being operated as part of the Space Station Power System Test Facility

    Power processor design considerations for a solar electric propulsion spacecraft

    Get PDF
    Propulsion power processor design options are described. The propulsion power processor generated the regulated dc voltages and currents from a solar array source of a solar electric propelled spacecraft. The power processor consisted of 12 power supplies that provide the regulated voltages and currents necessary to power a 30-cm mercury ion thruster. The design options for processing unregulated solar array power and for generating the regulated power required by each supply are studied. The technical approaches utilized in the developed design and the technological limitation of the identified design options are discussed. Alternate approaches for delivering power to a number of mercury ion thrusters and methods of optimizing are described. It was concluded that this power processor design should be considered for application in solar electric propulsion missions of the future

    Distributed photovoltaic systems: Utility interface issues and their present status

    Get PDF
    Major technical issues involving the integration of distributed photovoltaics (PV) into electric utility systems are defined and their impacts are described quantitatively. An extensive literature search, interviews, and analysis yielded information about the work in progress and highlighted problem areas in which additional work and research are needed. The findings from the literature search were used to determine whether satisfactory solutions to the problems exist or whether satisfactory approaches to a solution are underway. It was discovered that very few standards, specifications, or guidelines currently exist that will aid industry in integrating PV into the utility system. Specific areas of concern identified are: (1) protection, (2) stability, (3) system unbalance, (4) voltage regulation and reactive power requirements, (5) harmonics, (6) utility operations, (7) safety, (8) metering, and (9) distribution system planning and design

    Issues concerning centralized versus decentralized power deployment

    Get PDF
    The results of a study of proposed lunar base architectures to identify issues concerning centralized and decentralized power system deployment options are presented. The power system consists of the energy producing system (power plant), the power conditioning components used to convert the generated power into the form desired for transmission, the transmission lines that conduct this power from the power sources to the loads, and the primary power conditioning hardware located at the user end. Three power system architectures, centralized, hybrid, and decentralized, were evaluated during the course of this study. Candidate power sources were characterized with respect to mass and radiator area. Two electrical models were created for each architecture to identify the preferred method of power transmission, dc or ac. Each model allowed the transmission voltage level to be varied at assess the impact on power system mass. The ac power system models also permitted the transmission line configurations and placements to determine the best conductor construction and installation location. Key parameters used to evaluate each configuration were power source and power conditioning component efficiencies, masses, and radiator areas; transmission line masses and operating temperatures; and total system mass

    Modular multilevel converter based LCL DC/DC converter for high power DC transmission grids

    Get PDF
    This paper presents a modular multilevel converter (MMC) based DC/DC converter with LCL inner circuit for HVDC transmission and DC grids. Three main design challenges are addressed. The first challenge is the use of MMCs with higher operating frequency compared to common transformer-based DC/DC converters where MMC operating frequency is limited to a few hundred hertz due to core losses. The second issue is the DC fault response. With the LCL circuit, the steady state fault current is limited to a low magnitude which is tolerable by MMC semiconductors. Mechanical DC circuit breakers can therefore be used to interrupt fault current for permanent faults and extra sub-module bypass thyristors are not necessary to protect antiparallel diodes. Thirdly, a novel controller structure is introduced with multiple coordinate frames ensuring zero local reactive power at both bridges in the whole load range. The proposed controller structure is also expandable to a DC hub with multiple ports. Detailed simulations using PSCAD/EMTDC are performed to verify the aforementioned design solutions in normal and fault conditions

    The Alternate Arm Converter: A New Hybrid Multilevel Converter With DC-Fault Blocking Capability

    No full text
    This paper explains the working principles, supported by simulation results, of a new converter topology intended for HVDC applications, called the alternate arm converter (AAC). It is a hybrid between the modular multilevel converter, because of the presence of H-bridge cells, and the two-level converter, in the form of director switches in each arm. This converter is able to generate a multilevel ac voltage and since its stacks of cells consist of H-bridge cells instead of half-bridge cells, they are able to generate higher ac voltage than the dc terminal voltage. This allows the AAC to operate at an optimal point, called the “sweet spot,” where the ac and dc energy flows equal. The director switches in the AAC are responsible for alternating the conduction period of each arm, leading to a significant reduction in the number of cells in the stacks. Furthermore, the AAC can keep control of the current in the phase reactor even in case of a dc-side fault and support the ac grid, through a STATCOM mode. Simulation results and loss calculations are presented in this paper in order to support the claimed features of the AAC
    corecore