2,678 research outputs found

    Memristor MOS Content Addressable Memory (MCAM): Hybrid Architecture for Future High Performance Search Engines

    Full text link
    Large-capacity Content Addressable Memory (CAM) is a key element in a wide variety of applications. The inevitable complexities of scaling MOS transistors introduce a major challenge in the realization of such systems. Convergence of disparate technologies, which are compatible with CMOS processing, may allow extension of Moore's Law for a few more years. This paper provides a new approach towards the design and modeling of Memristor (Memory resistor) based Content Addressable Memory (MCAM) using a combination of memristor MOS devices to form the core of a memory/compare logic cell that forms the building block of the CAM architecture. The non-volatile characteristic and the nanoscale geometry together with compatibility of the memristor with CMOS processing technology increases the packing density, provides for new approaches towards power management through disabling CAM blocks without loss of stored data, reduces power dissipation, and has scope for speed improvement as the technology matures.Comment: 10 pages, 11 figure

    Distributed ARTMAP

    Full text link
    Distributed coding at the hidden layer of a multi-layer perceptron (MLP) endows the network with memory compression and noise tolerance capabilities. However, an MLP typically requires slow off-line learning to avoid catastrophic forgetting in an open input environment. An adaptive resonance theory (ART) model is designed to guarantee stable memories even with fast on-line learning. However, ART stability typically requires winner-take-all coding, which may cause category proliferation in a noisy input environment. Distributed ARTMAP (dARTMAP) seeks to combine the computational advantages of MLP and ART systems in a real-time neural network for supervised learning. This system incorporates elements of the unsupervised dART model as well as new features, including a content-addressable memory (CAM) rule. Simulations show that dARTMAP retains fuzzy ARTMAP accuracy while significantly improving memory compression. The model's computational learning rules correspond to paradoxical cortical data.Office of Naval Research (N00014-95-1-0409, N00014-95-1-0657

    Bionanomaterials from plant viruses

    Get PDF
    Plant virus capsids have emerged as useful biotemplates for material synthesis. All plant virus capsids are assembled with high-precision, three-dimensional structures providing nanoscale architectures that are highly monodisperse, can be produced in large quantities and that cannot replicate in mammalian cells (so are safe). Such exceptional characteristics make plant viruses strong candidates for application as biotemplates for novel and new material synthesis

    Analog Content-Addressable Memory from Complementary FeFETs

    Full text link
    To address the increasing computational demands of artificial intelligence (AI) and big data, compute-in-memory (CIM) integrates memory and processing units into the same physical location, reducing the time and energy overhead of the system. Despite advancements in non-volatile memory (NVM) for matrix multiplication, other critical data-intensive operations, like parallel search, have been overlooked. Current parallel search architectures, namely content-addressable memory (CAM), often use binary, which restricts density and functionality. We present an analog CAM (ACAM) cell, built on two complementary ferroelectric field-effect transistors (FeFETs), that performs parallel search in the analog domain with over 40 distinct match windows. We then deploy it to calculate similarity between vectors, a building block in the following two machine learning problems. ACAM outperforms ternary CAM (TCAM) when applied to similarity search for few-shot learning on the Omniglot dataset, yielding projected simulation results with improved inference accuracy by 5%, 3x denser memory architecture, and more than 100x faster speed compared to central processing unit (CPU) and graphics processing unit (GPU) per similarity search on scaled CMOS nodes. We also demonstrate 1-step inference on a kernel regression model by combining non-linear kernel computation and matrix multiplication in ACAM, with simulation estimates indicating 1,000x faster inference than CPU and GPU

    An Energy-Efficient Design Paradigm for a Memory Cell Based on Novel Nanoelectromechanical Switches

    Get PDF
    In this chapter, we explain NEMsCAM cell, a new content-addressable memory (CAM) cell, which is designed based on both CMOS technologies and nanoelectromechanical (NEM) switches. The memory part of NEMsCAM is designed with two complementary nonvolatile NEM switches and located on top of the CMOS-based comparison component. As a use case, we evaluate first-level instruction and data translation lookaside buffers (TLBs) with 16 nm CMOS technology at 2 GHz. The simulation results demonstrate that the NEMsCAM TLB reduces the energy consumption per search operation (by 27%), standby mode (by 53.9%), write operation (by 41.9%), and the area (by 40.5%) compared to a CMOS-only TLB with minimal performance overhead

    Quantum-dot Cellular Automata: Review Paper

    Get PDF
    Quantum-dot Cellular Automata (QCA) is one of the most important discoveries that will be the successful alternative for CMOS technology in the near future. An important feature of this technique, which has attracted the attention of many researchers, is that it is characterized by its low energy consumption, high speed and small size compared with CMOS.  Inverter and majority gate are the basic building blocks for QCA circuits where it can design the most logical circuit using these gates with help of QCA wire. Due to the lack of availability of review papers, this paper will be a destination for many people who are interested in the QCA field and to know how it works and why it had taken lots of attention recentl
    • …
    corecore