1,059 research outputs found

    Leveraging electronic healthcare record standards and semantic web technologies for the identification of patient cohorts

    Get PDF
    Introduction The secondary use of Electronic Healthcare Records (EHRs) often requires the identification of patient cohorts. In this context, an important problem is the heterogeneity of clinical data sources, which can be overcome with the combined use of standardized information models, Virtual Health Records, and semantic technologies, since each of them contributes to solving aspects related to the semantic interoperability of EHR data. Our main objective is to develop methods allowing for a direct use of EHR data for the identification of patient cohorts leveraging current EHR standards and semantic web technologies. Materials and Methods We propose to take advantage of the best features of working with EHR standards and ontologies. Our proposal is based on our previous results and experience working with both technological infrastructures. Our main principle is to perform each activity at the abstraction level with the most appropriate technology available. This means that part of the processing will be performed using archetypes (i.e., data level) and the rest using ontologies (i.e., knowledge level). Our approach will start working with EHR data in proprietary format, which will be first normalized and elaborated using EHR standards and then transformed into a semantic representation, which will be exploited by automated reasoning. Results We have applied our approach to protocols for colorectal cancer screening. The results comprise the archetypes, ontologies and datasets developed for the standardization and semantic analysis of EHR data. Anonymized real data has been used and the patients have been successfully classified by the risk of developing colorectal cancer. Conclusion This work provides new insights in how archetypes and ontologies can be effectively combined for EHR-driven phenotyping. The methodological approach can be applied to other problems provided that suitable archetypes, ontologies and classification rules can be designed.This work was supported by the Ministerio de Economia y Competitividad and the FEDER program through grants TIN2010-21388-C01 and TIN2010-21388-C02. MCLG was supported by the Fundacion Seneca through grant 15555/FPI/2010.Fernández-Breis, JT.; Maldonado Segura, JA.; Marcos, M.; Legaz-García, MDC.; Moner Cano, D.; Torres-Sospedra, J.; Esteban-Gil, A.... (2013). Leveraging electronic healthcare record standards and semantic web technologies for the identification of patient cohorts. Journal of the American Medical Informatics Association. 20(E2):288-296. https://doi.org/10.1136/amiajnl-2013-001923S28829620E2Cuggia, M., Besana, P., & Glasspool, D. (2011). Comparing semi-automatic systems for recruitment of patients to clinical trials. International Journal of Medical Informatics, 80(6), 371-388. doi:10.1016/j.ijmedinf.2011.02.003Sujansky, W. (2001). Heterogeneous Database Integration in Biomedicine. Journal of Biomedical Informatics, 34(4), 285-298. doi:10.1006/jbin.2001.1024Schadow G Russler DC Mead CN . Integrating medical information and knowledge in the HL7 RIM. Proceedings of the AMIA Symposium, 2000:764–8.Johnson PD Tu SW Musen MA . A virtual medical record for guideline-based decision support. Proceedings of the AMIA 2001 Annual Symposium, 294–8.German, E., Leibowitz, A., & Shahar, Y. (2009). An architecture for linking medical decision-support applications to clinical databases and its evaluation. Journal of Biomedical Informatics, 42(2), 203-218. doi:10.1016/j.jbi.2008.10.007Peleg, M., Keren, S., & Denekamp, Y. (2008). Mapping computerized clinical guidelines to electronic medical records: Knowledge-data ontological mapper (KDOM). Journal of Biomedical Informatics, 41(1), 180-201. doi:10.1016/j.jbi.2007.05.003Maldonado, J. A., Costa, C. M., Moner, D., Menárguez-Tortosa, M., Boscá, D., Miñarro Giménez, J. A., … Robles, M. (2012). Using the ResearchEHR platform to facilitate the practical application of the EHR standards. Journal of Biomedical Informatics, 45(4), 746-762. doi:10.1016/j.jbi.2011.11.004Parker CG Rocha RA Campbell JR . Detailed clinical models for sharable, executable guidelines. Stud Health Technol Inform 2004;107:145–8.Clinical Information Modeling Initiative. http://informatics.mayo.edu/CIMI/index.php/Main_Page (accessed Jun 2013).W3C, OWL2 Web Ontology Language. http://www.w3.org/TR/owl2-overview/ (accessed Jun 2013).European Commission. Semantic interoperability for better health and safer healthcare. Deployment and research roadmap for Europe. ISBN-13: 978-92-79-11139-6, 2009.SemanticHealthNet. http://www.semantichealthnet.eu/ (accessed Jun 2013).Martínez-Costa, C., Menárguez-Tortosa, M., Fernández-Breis, J. T., & Maldonado, J. A. (2009). A model-driven approach for representing clinical archetypes for Semantic Web environments. Journal of Biomedical Informatics, 42(1), 150-164. doi:10.1016/j.jbi.2008.05.005Iqbal AM . An OWL-DL ontology for the HL7 reference information model. Toward useful services for elderly and people with disabilities Berlin: Springer, 2011:168–75.Tao, C., Jiang, G., Oniki, T. A., Freimuth, R. R., Zhu, Q., Sharma, D., … Chute, C. G. (2012). A semantic-web oriented representation of the clinical element model for secondary use of electronic health records data. Journal of the American Medical Informatics Association, 20(3), 554-562. doi:10.1136/amiajnl-2012-001326Heymans, S., McKennirey, M., & Phillips, J. (2011). Semantic validation of the use of SNOMED CT in HL7 clinical documents. Journal of Biomedical Semantics, 2(1), 2. doi:10.1186/2041-1480-2-2Menárguez-Tortosa, M., & Fernández-Breis, J. T. (2013). OWL-based reasoning methods for validating archetypes. Journal of Biomedical Informatics, 46(2), 304-317. doi:10.1016/j.jbi.2012.11.009Lezcano, L., Sicilia, M.-A., & Rodríguez-Solano, C. (2011). Integrating reasoning and clinical archetypes using OWL ontologies and SWRL rules. Journal of Biomedical Informatics, 44(2), 343-353. doi:10.1016/j.jbi.2010.11.005Tao C Wongsuphasawat K Clark K . Towards event sequence representation, reasoning and visualization for EHR data. Proceedings of the 2nd ACM SIGHIT International Health Informatics Symposium (IHI'12). New York, NY, USA: ACM:801–6.Bodenreider O . Biomedical ontologies in action: role in knowledge management, data integration and decision support. IMIA Yearbook of Medical Informatics 2008;67–79.Beale T . Archetypes. Constraint-based domain models for future-proof information systems. http://www.openehr.org/files/publications/archetypes/archetypes_beale_web_2000.pdfSNOMED-CT. http://www.ihtsdo.org/snomed-ct/ (accessed Jun 2013).UMLS Terminology Services. https://uts.nlm.nih.gov/home.html (accessed Jun 2013).The openEHR Foundation, openEHR Clinical Knowledge Manager. http://www.openehr.org/knowledge/ (accessed Jun 2013).Maldonado, J. A., Moner, D., Boscá, D., Fernández-Breis, J. T., Angulo, C., & Robles, M. (2009). LinkEHR-Ed: A multi-reference model archetype editor based on formal semantics. International Journal of Medical Informatics, 78(8), 559-570. doi:10.1016/j.ijmedinf.2009.03.006SAXON XSLT and XQuery processor. http://saxon.sourceforge.net/ (accessed Jun 2013).NCBO Bioportal. http://bioportal.bioontology.org/ (accessed Jun 2013).The Protégé Ontology Editor and Knowledge Acquisition System. http://protege.stanford.edu/ (accessed Jun 2013).Semantic Web Integration Tool. http://sele.inf.um.es/swit (accessed Jun 2013).Hermit Reasoner. http://www.hermit-reasoner.com/ (accessed Jun 2013).The OWLAPI. http://owlapi.sourceforge.net/ (accessed Jun 2013).Institute for Health Metrics and Evaluation. Global Burden of Disease. http://www.healthmetricsandevaluation.org/gbd (accessed Jun 2013).Segnan N Patnick J von Karsa L . European guidelines for quality assurance in colorectal cancer screening and diagnosis 2010. First Edition. European Union. ISBN 978-92-79-16435-4.W3C. XQuery 1.0: An XML Query Language. http://www.w3.org/TR/xquery/ (accessed Jun 2013).DL Query. http://protegewiki.stanford.edu/wiki/DL_Query (accessed Jun 2013).SPARQL Query Language for RDF. http://www.w3.org/TR/rdf-sparql-query/ (accessed Jun 2013).Semantic Web Rule Language. http://www.w3.org/Submission/SWRL/ (accessed Jun 2013).Marcos, M., Maldonado, J. A., Martínez-Salvador, B., Boscá, D., & Robles, M. (2013). Interoperability of clinical decision-support systems and electronic health records using archetypes: A case study in clinical trial eligibility. Journal of Biomedical Informatics, 46(4), 676-689. doi:10.1016/j.jbi.2013.05.004Marcos, M., Maldonado, J. A., Martínez-Salvador, B., Moner, D., Boscá, D., & Robles, M. (2011). An Archetype-Based Solution for the Interoperability of Computerised Guidelines and Electronic Health Records. Lecture Notes in Computer Science, 276-285. doi:10.1007/978-3-642-22218-4_35MobiGuide: Guiding patients anytime everywhere. http://www.mobiguide-project.eu/ (accessed Jun 2013).EURECA: Enabling information re-Use by linking clinical RE search and Care. http://eurecaproject.eu/ (accessed Jun 2013).Rea, S., Pathak, J., Savova, G., Oniki, T. A., Westberg, L., Beebe, C. E., … Chute, C. G. (2012). Building a robust, scalable and standards-driven infrastructure for secondary use of EHR data: The SHARPn project. Journal of Biomedical Informatics, 45(4), 763-771. doi:10.1016/j.jbi.2012.01.009Clinical Element Models. http://informatics.mayo.edu/sharp/index.php/CEMS (accessed Jun 2013)

    Electronic health records

    Get PDF

    Categorisation of visualisation methods to support the design of Human-Computer Interaction systems

    Get PDF
    During the design of Human-Computer Interaction (HCI) systems, the creation of visual artefacts forms an important part of design. On one hand producing a visual artefact has a number of advantages: it helps designers to externalise their thought and acts as a common language between different stakeholders. On the other hand, if an inappropriate visualisation method is employed it could hinder the design process. To support the design of HCI systems, this paper reviews the categorisation of visualisation methods used in HCI. A keyword search is conducted to identify a) current HCI design methods, b) approaches of selecting these methods. The resulting design methods are filtered to create a list of just visualisation methods. These are then categorised using the approaches identified in (b). As a result 23 HCI visualisation methods are identified and categorised in 5 selection approaches (The Recipient, Primary Purpose, Visual Archetype, Interaction Type, and The Design Process).Innovate UK, EPSRC, Airbus Group Innovation

    Clinical foundations and information architecture for the implementation of a federated health record service

    Get PDF
    Clinical care increasingly requires healthcare professionals to access patient record information that may be distributed across multiple sites, held in a variety of paper and electronic formats, and represented as mixtures of narrative, structured, coded and multi-media entries. A longitudinal person-centred electronic health record (EHR) is a much-anticipated solution to this problem, but its realisation is proving to be a long and complex journey. This Thesis explores the history and evolution of clinical information systems, and establishes a set of clinical and ethico-legal requirements for a generic EHR server. A federation approach (FHR) to harmonising distributed heterogeneous electronic clinical databases is advocated as the basis for meeting these requirements. A set of information models and middleware services, needed to implement a Federated Health Record server, are then described, thereby supporting access by clinical applications to a distributed set of feeder systems holding patient record information. The overall information architecture thus defined provides a generic means of combining such feeder system data to create a virtual electronic health record. Active collaboration in a wide range of clinical contexts, across the whole of Europe, has been central to the evolution of the approach taken. A federated health record server based on this architecture has been implemented by the author and colleagues and deployed in a live clinical environment in the Department of Cardiovascular Medicine at the Whittington Hospital in North London. This implementation experience has fed back into the conceptual development of the approach and has provided "proof-of-concept" verification of its completeness and practical utility. This research has benefited from collaboration with a wide range of healthcare sites, informatics organisations and industry across Europe though several EU Health Telematics projects: GEHR, Synapses, EHCR-SupA, SynEx, Medicate and 6WINIT. The information models published here have been placed in the public domain and have substantially contributed to two generations of CEN health informatics standards, including CEN TC/251 ENV 13606

    Trade-offs between Distributed Ledger Technology Characteristics

    Get PDF
    When developing peer-to-peer applications on distributed ledger technology (DLT), a crucial decision is the selection of a suitable DLT design (e.g., Ethereum), because it is hard to change the underlying DLT design post hoc. To facilitate the selection of suitable DLT designs, we review DLT characteristics and identify trade-offs between them. Furthermore, we assess how DLT designs account for these trade-offs and we develop archetypes for DLT designs that cater to specific requirements of applications on DLT. The main purpose of our article is to introduce scientific and practical audiences to the intricacies of DLT designs and to support development of viable applications on DLT

    A formal architecture-centric and model driven approach for the engineering of science gateways

    Get PDF
    From n-Tier client/server applications, to more complex academic Grids, or even the most recent and promising industrial Clouds, the last decade has witnessed significant developments in distributed computing. In spite of this conceptual heterogeneity, Service-Oriented Architecture (SOA) seems to have emerged as the common and underlying abstraction paradigm, even though different standards and technologies are applied across application domains. Suitable access to data and algorithms resident in SOAs via so-called ‘Science Gateways’ has thus become a pressing need in order to realize the benefits of distributed computing infrastructures.In an attempt to inform service-oriented systems design and developments in Grid-based biomedical research infrastructures, the applicant has consolidated work from three complementary experiences in European projects, which have developed and deployed large-scale production quality infrastructures and more recently Science Gateways to support research in breast cancer, pediatric diseases and neurodegenerative pathologies respectively. In analyzing the requirements from these biomedical applications the applicant was able to elaborate on commonly faced issues in Grid development and deployment, while proposing an adapted and extensible engineering framework. Grids implement a number of protocols, applications, standards and attempt to virtualize and harmonize accesses to them. Most Grid implementations therefore are instantiated as superposed software layers, often resulting in a low quality of services and quality of applications, thus making design and development increasingly complex, and rendering classical software engineering approaches unsuitable for Grid developments.The applicant proposes the application of a formal Model-Driven Engineering (MDE) approach to service-oriented developments, making it possible to define Grid-based architectures and Science Gateways that satisfy quality of service requirements, execution platform and distribution criteria at design time. An novel investigation is thus presented on the applicability of the resulting grid MDE (gMDE) to specific examples and conclusions are drawn on the benefits of this approach and its possible application to other areas, in particular that of Distributed Computing Infrastructures (DCI) interoperability, Science Gateways and Cloud architectures developments

    SenNet : a programming toolkit to develop wireless sensor network applications

    Get PDF
    One of the reasons that Wireless Sensor Network(WSN) applications are not widely available is the complexity in their development. This is a consequence of the complex nature in low-level details, which a developer must manage. The vast majority of the present application developments are done using node-centric low-level languages, for example, C. In order to make the WSN technology more universal; application development complexity nature should be reduced, and development efficiency increased. This paper describes SenNet language, which is a new approach to WSN application development using a Domain-Specific Language (DSL). SenNet empowers application developers to focus on modelling the application logic using domain specific terms. The new approach gives the ability to write applications using multi-levels of abstraction (i.e. network, group, and node-level). Evaluation results show that SenNet decreases the cognitive effort required for learning WSN application development in addition to the time required to write the application by using automated code generation from abstracted language commands
    • …
    corecore