621 research outputs found

    System Identification for Nonlinear Control Using Neural Networks

    Get PDF
    An approach to incorporating artificial neural networks in nonlinear, adaptive control systems is described. The controller contains three principal elements: a nonlinear inverse dynamic control law whose coefficients depend on a comprehensive model of the plant, a neural network that models system dynamics, and a state estimator whose outputs drive the control law and train the neural network. Attention is focused on the system identification task, which combines an extended Kalman filter with generalized spline function approximation. Continual learning is possible during normal operation, without taking the system off line for specialized training. Nonlinear inverse dynamic control requires smooth derivatives as well as function estimates, imposing stringent goals on the approximating technique

    Investigation of Air Transportation Technology at Princeton University, 1989-1990

    Get PDF
    The Air Transportation Technology Program at Princeton University proceeded along six avenues during the past year: microburst hazards to aircraft; machine-intelligent, fault tolerant flight control; computer aided heuristics for piloted flight; stochastic robustness for flight control systems; neural networks for flight control; and computer aided control system design. These topics are briefly discussed, and an annotated bibliography of publications that appeared between January 1989 and June 1990 is given

    Hierarchically Clustered Adaptive Quantization CMAC and Its Learning Convergence

    Get PDF
    No abstract availabl

    A neuro-fuzzy architecture for real-time applications

    Get PDF
    Neural networks and fuzzy expert systems perform the same task of functional mapping using entirely different approaches. Each approach has certain unique features. The ability to learn specific input-output mappings from large input/output data possibly corrupted by noise and the ability to adapt or continue learning are some important features of neural networks. Fuzzy expert systems are known for their ability to deal with fuzzy information and incomplete/imprecise data in a structured, logical way. Since both of these techniques implement the same task (that of functional mapping--we regard 'inferencing' as one specific category under this class), a fusion of the two concepts that retains their unique features while overcoming their individual drawbacks will have excellent applications in the real world. In this paper, we arrive at a new architecture by fusing the two concepts. The architecture has the trainability/adaptibility (based on input/output observations) property of the neural networks and the architectural features that are unique to fuzzy expert systems. It also does not require specific information such as fuzzy rules, defuzzification procedure used, etc., though any such information can be integrated into the architecture. We show that this architecture can provide better performance than is possible from a single two or three layer feedforward neural network. Further, we show that this new architecture can be used as an efficient vehicle for hardware implementation of complex fuzzy expert systems for real-time applications. A numerical example is provided to show the potential of this approach

    Terminal sliding mode control strategy design for second-order nonlinear system

    Full text link
    This study mainly focuses on the terminal sliding mode control (TSMC) strategy design, including an adaptive terminal sliding mode control (ATSMC) and an exact-estimator-based terminal sliding mode control (ETSMC) for second-order nonlinear dynamical systems. In the ATSMC system, an adaptive bound estimation for the lump uncertainty is proposed to ensure the system stability. On the other hand, an exact estimator is designed for exact estimating system uncertainties to solve the trouble of chattering phenomena caused by a sign function in ATSMC law in despite of the utilization of a fixed value or an adaptive tuning algorithm for the lumped uncertainty bound. The effectiveness of the proposed control schemes can be verified in numerical simulations.<br /

    Robust Adaptive Cerebellar Model Articulation Controller for 1-DOF Nonlaminated Active Magnetic Bearings

    Get PDF
    This paper presents a robust adaptive cerebellar model articulation controller (RACMAC) for 1-DOF nonlaminated active magnetic bearings (AMBs) to achieve desired positions for the rotor using a robust sliding mode control based. The dynamic model of 1-DOF nonlaminated AMB is introduced in fractional order equations. However, it is challenging to design a controller based on the model\u27s parameters due to undefined components and external disturbances such as eddy current losses in the actuator, external disturbance, variant parameters of the model while operating. In order to tackle the problem, RACMAC, which has a cerebellar model to estimate nonlinear disturbances, is investigated to resolve this problem. Based on this estimation, a robust adaptive controller that approximates the ideal and compensation controllers is calculated. The online parameters of the neural network are adjusted using Lyapunov\u27s stability theory to ensure the stability of system. Simulation results are presented to demonstrate the effectiveness of the proposed controller.The simulation results indicate that the CMAC multiple nonlinear multiple estimators are close to the actual nonlinear disturbance value, and the effectiveness of the proposed RACMAC method compared with the FOPID and SMC controllers has been studied previously

    Design of cross-coupled CMAC for contour-following ā€“ a reinforcement-based ILC approach

    Get PDF
    One of the most popular applications of a bi-axial motion stage is precision motion control. The reduction of tracking error and contour error is one of the most coveted goals in precision motion control systems. The accuracy of a motion control system is often affected by external disturbances. In addition, system non-linearity such as friction also represents a major hurdle to motion precision. In order to deal with the aforementioned problem, this paper proposes a fuzzy logic-based Reinforcement Iterative Learning Control (RILC) and a Cross-Coupled Cerebellar Model Articulation Controller (CCCMAC). In particular, the proposed fuzzy logicbased RILC and a LuGre friction model-based compensation approach are exploited to improve motion accuracy. The fuzzy logic-based RILC aims at reducing tracking error and compensating for external disturbance, while the LuGre friction model is responsible for friction compensation. In addition, the CCCMAC consisting of a cerebellar model articulation controller and a cross-coupled controller aims at reducing contour error and dealing with the problem of dynamics mismatch between different axes. Performance comparisons between the proposed fuzzy logic-based Reinforcement Iterative Learning Cross-Coupled Cerebellar Model Articulation Controller (RILā€“CCCMAC) and several existing control schemes are conducted on a bi-axial motion stage. Experimental results verify the effectiveness of the proposed RILā€“CCCMAC

    A Novel Self-organizing Fuzzy Cerebellar Model Articulation Controller Based Overlapping Gaussian Membership Function for Controlling Robotic System

    Get PDF
    This paper introduces an effective intelligent controller for robotic systems with uncertainties. The proposed method is a novel self-organizing fuzzy cerebellar model articulation controller (NSOFC) which is a combination of a cerebellar model articulation controller (CMAC) and sliding mode control (SMC). We also present a new Gaussian membership function (GMF) that is designed by the combination of the prior and current GMF for each layer of CMAC. In addition, the relevant data of the prior GMF is used to check tracking errors more accurately. The inputs of the proposed controller can be mixed simultaneously between the prior and current states according to the corresponding errors. Moreover, the controller uses a self-organizing approach which can increase or decrease the number of layers, therefore the structures of NSOFC can be adjusted automatically. The proposed method consists of a NSOFC controller and a compensation controller. The NSOFC controller is used to estimate the ideal controller, and the compensation controller is used to eliminate the approximated error. The online parameters tuning law of NSOFC is designed based on Lyapunovā€™s theory to ensure stability of the system. Finally, the experimental results of a 2 DOF robot arm are used to demonstrate the efficiency of the proposed controller

    Hazardous Odor Recognition by CMAC Based Neural Networks

    Get PDF
    Electronic noses are being developed as systems for the automated detection and classification of odors, vapors, and gases. Artificial neural networks (ANNs) have been used to analyze complex data and to recognize patterns, and have shown promising results in recognition of volatile compounds and odors in electronic nose applications. When an ANN is combined with a sensor array, the number of detectable chemicals is generally greater than the number of unique sensor types. The odor sensing system should be extended to new areas since its standard style where the output pattern from multiple sensors with partially overlapped specificity is recognized by a neural network or multivariate analysis. This paper describes the design, implementation and performance evaluations of the application developed for hazardous odor recognition using Cerebellar Model Articulation Controller (CMAC) based neural networks
    • ā€¦
    corecore