20,722 research outputs found

    Design and analysis of an efficient energy algorithm in wireless social sensor networks

    Get PDF
    Because mobile ad hoc networks have characteristics such as lack of center nodes, multi-hop routing and changeable topology, the existing checkpoint technologies for normal mobile networks cannot be applied well to mobile ad hoc networks. Considering the multi-frequency hierarchy structure of ad hoc networks, this paper proposes a hybrid checkpointing strategy which combines the techniques of synchronous checkpointing with asynchronous checkpointing, namely the checkpoints of mobile terminals in the same cluster remain synchronous, and the checkpoints in different clusters remain asynchronous. This strategy could not only avoid cascading rollback among the processes in the same cluster, but also avoid too many message transmissions among the processes in different clusters. What is more, it can reduce the communication delay. In order to assure the consistency of the global states, this paper discusses the correctness criteria of hybrid checkpointing, which includes the criteria of checkpoint taking, rollback recovery and indelibility. Based on the designed Intra-Cluster Checkpoint Dependence Graph and Inter-Cluster Checkpoint Dependence Graph, the elimination rules for different kinds of checkpoints are discussed, and the algorithms for the same cluster checkpoints, different cluster checkpoints, and rollback recovery are also given. Experimental results demonstrate the proposed hybrid checkpointing strategy is a preferable trade-off method, which not only synthetically takes all kinds of resource constraints of Ad hoc networks into account, but also outperforms the existing schemes in terms of the dependence to cluster heads, the recovery time compared to the pure synchronous, and the pure asynchronous checkpoint advantage. © 2017 by the authors. Licensee MDPI, Basel, Switzerland

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Coverage Protocols for Wireless Sensor Networks: Review and Future Directions

    Full text link
    The coverage problem in wireless sensor networks (WSNs) can be generally defined as a measure of how effectively a network field is monitored by its sensor nodes. This problem has attracted a lot of interest over the years and as a result, many coverage protocols were proposed. In this survey, we first propose a taxonomy for classifying coverage protocols in WSNs. Then, we classify the coverage protocols into three categories (i.e. coverage aware deployment protocols, sleep scheduling protocols for flat networks, and cluster-based sleep scheduling protocols) based on the network stage where the coverage is optimized. For each category, relevant protocols are thoroughly reviewed and classified based on the adopted coverage techniques. Finally, we discuss open issues (and recommend future directions to resolve them) associated with the design of realistic coverage protocols. Issues such as realistic sensing models, realistic energy consumption models, realistic connectivity models and sensor localization are covered

    Cross-layer distributed power control: A repeated games formulation to improve the sum energy-efficiency

    Get PDF
    The main objective of this work is to improve the energy-efficiency (EE) of a multiple access channel (MAC) system, through power control, in a distributed manner. In contrast with many existing works on energy-efficient power control, which ignore the possible presence of a queue at the transmitter, we consider a new generalized cross-layer EE metric. This approach is relevant when the transmitters have a non-zero energy cost even when the radiated power is zero and takes into account the presence of a finite packet buffer and packet arrival at the transmitter. As the Nash equilibrium (NE) is an energy-inefficient solution, the present work aims at overcoming this deficit by improving the global energy-efficiency. Indeed, as the considered system has multiple agencies each with their own interest, the performance metric reflecting the individual interest of each decision maker is the global energy-efficiency defined then as the sum over individual energy-efficiencies. Repeated games (RG) are investigated through the study of two dynamic games (finite RG and discounted RG), whose equilibrium is defined when introducing a new operating point (OP), Pareto-dominating the NE and relying only on individual channel state information (CSI). Accordingly, closed-form expressions of the minimum number of stages of the game for finite RG (FRG) and the maximum discount factor of the discounted RG (DRG) were established. The cross-layer model in the RG formulation leads to achieving a shorter minimum number of stages in the FRG even for higher number of users. In addition, the social welfare (sum of utilities) in the DRG decreases slightly with the cross-layer model when the number of users increases while it is reduced considerably with the Goodman model. Finally, we show that in real systems with random packet arrivals, the cross-layer power control algorithm outperforms the Goodman algorithm.Comment: 36 pages, single column draft forma
    corecore