947 research outputs found

    Adaptive fair channel allocation for QoS enhancement in IEEE 802.11 wireless LANs

    Get PDF
    The emerging widespread use of real-time multimedia applications over wireless networks makes the support of quality of service (QoS) a key problem. In this paper, we focus on QoS support mechanisms for IEEE 802.11 wireless ad-hoc networks. First, we review limitations of the upcoming IEEE 802.11e enhanced DCF (EDCF) and other enhanced MAC schemes that have been proposed to support QoS for 802.11 ad-hoc networks. Then, we describe a new scheme called adaptive fair EDCF that extends EDCF, by increasing the contention window during deferring periods when the channel is busy, and by using an adaptive fast backoff mechanism when the channel is idle. Our scheme computes an adaptive backoff threshold for each priority level by taking into account the channel load. The new scheme significantly improves the quality of multimedia applications. Moreover, it increases the overall throughput obtained both in medium and high load cases. Simulution results show that our new scheme outperforms EDCF and other enhanced schemes. Finally, we show that the adaptive fair EDCF scheme achieves a high degree of fairness among applications of the same priority level

    Decentralised Learning MACs for Collision-free Access in WLANs

    Get PDF
    By combining the features of CSMA and TDMA, fully decentralised WLAN MAC schemes have recently been proposed that converge to collision-free schedules. In this paper we describe a MAC with optimal long-run throughput that is almost decentralised. We then design two \changed{schemes} that are practically realisable, decentralised approximations of this optimal scheme and operate with different amounts of sensing information. We achieve this by (1) introducing learning algorithms that can substantially speed up convergence to collision free operation; (2) developing a decentralised schedule length adaptation scheme that provides long-run fair (uniform) access to the medium while maintaining collision-free access for arbitrary numbers of stations

    A Dynamic Multimedia User-Weight Classification Scheme for IEEE_802.11 WLANs

    Full text link
    In this paper we expose a dynamic traffic-classification scheme to support multimedia applications such as voice and broadband video transmissions over IEEE 802.11 Wireless Local Area Networks (WLANs). Obviously, over a Wi-Fi link and to better serve these applications - which normally have strict bounded transmission delay or minimum link rate requirement - a service differentiation technique can be applied to the media traffic transmitted by the same mobile node using the well-known 802.11e Enhanced Distributed Channel Access (EDCA) protocol. However, the given EDCA mode does not offer user differentiation, which can be viewed as a deficiency in multi-access wireless networks. Accordingly, we propose a new inter-node priority access scheme for IEEE 802.11e networks which is compatible with the EDCA scheme. The proposed scheme joins a dynamic user-weight to each mobile station depending on its outgoing data, and therefore deploys inter-node priority for the channel access to complement the existing EDCA inter-frame priority. This provides efficient quality of service control across multiple users within the same coverage area of an access point. We provide performance evaluations to compare the proposed access model with the basic EDCA 802.11 MAC protocol mode to elucidate the quality improvement achieved for multimedia communication over 802.11 WLANs.Comment: 15 pages, 8 figures, 3 tables, International Journal of Computer Networks & Communications (IJCNC

    Adaptive medium access control for VoIP services in IEEE 802.11 WLANs

    Get PDF
    Abstract- Voice over Internet Protocol (VoIP) is an important service with strict Quality-of-Service (QoS) requirements in Wireless Local Area Networks (WLANs). The popular Distributed Coordination Function (DCF) of IEEE 802.11 Medium Access Control (MAC) protocol adopts a Binary Exponential Back-off (BEB) procedure to reduce the packet collision probability in WLANs. In DCF, the size of contention window is doubled upon a collision regardless of the network loads. This paper presents an adaptive MAC scheme to improve the QoS of VoIP in WLANs. This scheme applies a threshold of the collision rate to switch between two different functions for increasing the size of contention window based on the status of network loads. The performance of this scheme is investigated and compared to the original DCF using the network simulator NS-2. The performance results reveal that the adaptive scheme is able to achieve the higher throughput and medium utilization as well as lower access delay and packet loss probability than the original DCF

    Is Our Model for Contention Resolution Wrong?

    Full text link
    Randomized binary exponential backoff (BEB) is a popular algorithm for coordinating access to a shared channel. With an operational history exceeding four decades, BEB is currently an important component of several wireless standards. Despite this track record, prior theoretical results indicate that under bursty traffic (1) BEB yields poor makespan and (2) superior algorithms are possible. To date, the degree to which these findings manifest in practice has not been resolved. To address this issue, we examine one of the strongest cases against BEB: nn packets that simultaneously begin contending for the wireless channel. Using Network Simulator 3, we compare against more recent algorithms that are inspired by BEB, but whose makespan guarantees are superior. Surprisingly, we discover that these newer algorithms significantly underperform. Through further investigation, we identify as the culprit a flawed but common abstraction regarding the cost of collisions. Our experimental results are complemented by analytical arguments that the number of collisions -- and not solely makespan -- is an important metric to optimize. We believe that these findings have implications for the design of contention-resolution algorithms.Comment: Accepted to the 29th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA 2017
    • …
    corecore