71 research outputs found

    Advances in Nanowire-Based Computing Architectures

    Get PDF

    Reservoir Computing in Materio

    Get PDF
    Reservoir Computing first emerged as an efficient mechanism for training recurrent neural networks and later evolved into a general theoretical model for dynamical systems. By applying only a simple training mechanism many physical systems have become exploitable unconventional computers. However, at present, many of these systems require careful selection and tuning by hand to produce usable or optimal reservoir computers. In this thesis we show the first steps to applying the reservoir model as a simple computational layer to extract exploitable information from complex material substrates. We argue that many physical substrates, even systems that in their natural state might not form usable or "good" reservoirs, can be configured into working reservoirs given some stimulation. To achieve this we apply techniques from evolution in materio whereby configuration is through evolved input-output signal mappings and targeted stimuli. In preliminary experiments the combined model and configuration method is applied to carbon nanotube/polymer composites. The results show substrates can be configured and trained as reservoir computers of varying quality. It is shown that applying the reservoir model adds greater functionality and programmability to physical substrates, without sacrificing performance. Next, the weaknesses of the technique are addressed, with the creation of new high input-output hardware system and an alternative multi-substrate framework. Lastly, a substantial effort is put into characterising the quality of a substrate for reservoir computing, i.e its ability to realise many reservoirs. From this, a methodological framework is devised. Using the framework, radically different computing substrates are compared and assessed, something previously not possible. As a result, a new understanding of the relationships between substrate, tasks and properties is possible, outlining the way for future exploration and optimisation of new computing substrates

    BOOLEAN AND BRAIN-INSPIRED COMPUTING USING SPIN-TRANSFER TORQUE DEVICES

    Get PDF
    Several completely new approaches (such as spintronic, carbon nanotube, graphene, TFETs, etc.) to information processing and data storage technologies are emerging to address the time frame beyond current Complementary Metal-Oxide-Semiconductor (CMOS) roadmap. The high speed magnetization switching of a nano-magnet due to current induced spin-transfer torque (STT) have been demonstrated in recent experiments. Such STT devices can be explored in compact, low power memory and logic design. In order to truly leverage STT devices based computing, researchers require a re-think of circuit, architecture, and computing model, since the STT devices are unlikely to be drop-in replacements for CMOS. The potential of STT devices based computing will be best realized by considering new computing models that are inherently suited to the characteristics of STT devices, and new applications that are enabled by their unique capabilities, thereby attaining performance that CMOS cannot achieve. The goal of this research is to conduct synergistic exploration in architecture, circuit and device levels for Boolean and brain-inspired computing using nanoscale STT devices. Specifically, we first show that the non-volatile STT devices can be used in designing configurable Boolean logic blocks. We propose a spin-memristor threshold logic (SMTL) gate design, where memristive cross-bar array is used to perform current mode summation of binary inputs and the low power current mode spintronic threshold device carries out the energy efficient threshold operation. Next, for brain-inspired computing, we have exploited different spin-transfer torque device structures that can implement the hard-limiting and soft-limiting artificial neuron transfer functions respectively. We apply such STT based neuron (or ‘spin-neuron’) in various neural network architectures, such as hierarchical temporal memory and feed-forward neural network, for performing “human-like” cognitive computing, which show more than two orders of lower energy consumption compared to state of the art CMOS implementation. Finally, we show the dynamics of injection locked Spin Hall Effect Spin-Torque Oscillator (SHE-STO) cluster can be exploited as a robust multi-dimensional distance metric for associative computing, image/ video analysis, etc. Our simulation results show that the proposed system architecture with injection locked SHE-STOs and the associated CMOS interface circuits can be suitable for robust and energy efficient associative computing and pattern matching

    Evaluation of AXI-Interfaces for Hardware Software Communication

    Get PDF
    A SoC design approach is implemented for the MERGE project which features Machine Learning (ML) interface for the hardware design. This setup deals with detection and localization of impact on a piezo metal composite. Development of the project is executed on Digilent ZYBO board. ZYBO incorporates Xilinx ZYNQ architecture. This architecture provides Processing System (PS) and Programmable Logic (PL) that communicate with each other via AMBA Standard AXI4 Interface. Communication cost have major inuence on the system performance. A optimized hardware software partitioning solution will reduce the communication costs. Therefore, best fitting interface for the provided design is needed to be evaluated to trade-off between cost and performance. High performance of AXI Interface will provide efficient localization of impact, especially for real-time scenario. In the thesis, the performance of three different AXI4 interface are evaluated. Evaluation is performed on the basis of the amount of data transferred and the time taken to process it. Evaluation of interfaces are done through implementation of test cases in Xilinx SDK. Hardware design for AXI4-Interfaces is implemented in Vivado and later tested on Digilent ZYBO board. To test the performance of interfaces, read and write operations are initiated by PS on interface design. Each operation is performed for multiple data lengths. Average execution time is calculated that highlights time taken to transfer the corresponding input data length. Through these tests, it is found that AXI4-Stream is the best choice for a continuous set of data. Preferably, it provides unlimited burst length which is useful for the current project. Among other two interfaces, AXI4-Full performed better in terms of execution time as compared to AXI4-Lite
    corecore