775 research outputs found

    Linear Permanent Magnet Vernier Generators for Wave Energy Applications: Analysis, Challenges, and Opportunities

    Get PDF
    © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).Harvesting energy from waves as a substantial resource of renewable energy has attracted much attention in recent years. Linear permanent magnet vernier generators (LPMVGs) have been widely adopted in wave energy applications to extract clean energy from oceans. Linear PM vernier machines perform based on the magnetic gearing effect, allowing them to offer high power/force density at low speeds. The outstanding feature of providing high power capability makes linear vernier generators more advantageous compared to linear PM synchronous counterparts used in wave energy conversion systems. Nevertheless, they inherently suffer from a poor power factor arising from their considerable leakage flux. Various structures and methods have been introduced to enhance their performance and improve their low power factor. In this work, a comparative study of different structures, distinguishable concepts, and operation principles of linear PM vernier machines is presented. Furthermore, recent advancements and innovative improvements have been investigated. They are categorized and evaluated to provide a comprehensive insight into the exploitation of linear vernier generators in wave energy extracting systems. Finally, some significant structures of linear PM vernier generators are modeled using two-dimensional finite element analysis (2D-FEA) to compare their electromagnetic characteristics and survey their performance.Peer reviewe

    Linear Machines for Long Stroke Applications: a review

    Get PDF
    This document reviews the current state of the art in the linear machine technology. First,the recent advancements in linear induction, switched reluctance and permanent magnet machines arepresented. The ladder slit secondary configuration is identified as an interesting configuration for linearinduction machines. In the case of switched reluctance machines, the mutually-coupled configuration hasbeen found to equate the thrust capability of conventional permanent magnet machines. The capabilities ofthe so called linear primary permanent magnet, viz. switched-flux, flux-reversal, doubly-salient and verniermachines are presented afterwards. A guide of different options to enhance several characteristics of linearmachines is also listed. A qualitative comparison of the capabilities of linear primary permanent magnetmachines is given later, where linear vernier and switched-flux machines are identified as the most interestingconfigurations for long stroke applications. In order to demonstrate the validity of the presented comparison,three machines are selected from the literature, and their capabilities are compared under the same conditionsto a conventional linear permanent magnet machine. It is found that the flux-reversal machines suffer froma very poor power factor, whereas the thrust capability of both vernier and switched-flux machines isconfirmed. However, the overload capability of these machines is found to be substantially lower than theone from the conventional machine. Finally, some different research topics are identified and suggested foreach type of machine

    Permanent Magnet Vernier Machine: A Review

    Get PDF
    Permanent magnet vernier machines (PMVMs) gained a lot of interest over the past couple of decades. This is mainly due to their high torque density enabled by the magnetic gearing effect. This study will provide a thorough review of recent advances in PMVMs. This review will cover the principle of operation and nature of magnetic gearing in PMVMs, and a better understanding of novel PMVM topologies using different winding configuration as well as different modulation poles and rotor structures. Detailed discussions on the choice of gear ratio, slot-pole combinations, design optimisation and role of advanced materials in PMVMs will be presented. This will provide an update on the current state-of-the art as well as future areas of research. Furthermore, the power factor issue, fault tolerance as well as cost reduction will be discussed highlighting the gap between the current state-of-the art and what is needed in practical applications

    A linear stator permanent magnet vernier HTS machine for wave energy conversion

    Get PDF
    published_or_final_versio

    Optimal gear ratio selection of linear primary permanent magnet vernier machines for wave energy applications

    Get PDF
    © 2023 The Authors. IET Renewable Power Generation published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/Linear permanent magnet vernier generators offer a high capability of force density, making them appealing configurations for wave energy harvesting systems. In absolute terms, the performance of these machines is significantly influenced by the selection of slot/pole combinations based on the magnetic gearing effect. For the first time, this paper aims to investigate the impact of different gear ratios on a wide array of linear primary permanent magnet vernier machines (LPPMVMs) with different slot/pole combinations based on fair criteria to offer a more comprehensive understanding of gear ratio selection. To find the optimal number of slots and poles, the response surface methodology is adopted to obtain a robust design and make a fair comparison among LPPMVMs with optimum design characteristics using a cost‐effective approach for the fast and reliable optimisation process. The higher gear ratios result in higher thrust force capability. This will help establishing a new route toward faster develpment of advanced LPPMVMs. The power loss models of LPPMVMs are studied to predict their steady‐state and transient thermal behaviours, verifying their stability and safety, while a simple external forced convection method can be utilised. To verify the model, finite element analysis is exploited to confirm the electromagnetic and thermal analysis results and provide a more exhaustive investigation.Peer reviewe

    Optimal gear ratio selection of linear primary permanent magnet vernier machines for wave energy applications

    Get PDF
    Linear permanent magnet vernier generators offer a high capability of force density, making them appealing configurations for wave energy harvesting systems. In absolute terms, the performance of these machines is significantly influenced by the selection of slot/pole combinations based on the magnetic gearing effect. For the first time, this paper aims to investigate the impact of different gear ratios on a wide array of linear primary permanent magnet vernier machines (LPPMVMs) with different slot/pole combinations based on fair criteria to offer a more comprehensive understanding of gear ratio selection. To find the optimal number of slots and poles, the response surface methodology is adopted to obtain a robust design and make a fair comparison among LPPMVMs with optimum design characteristics using a cost-effective approach for the fast and reliable optimisation process. The higher gear ratios result in higher thrust force capability. This will help establishing a new route toward faster develpment of advanced LPPMVMs. The power loss models of LPPMVMs are studied to predict their steady-state and transient thermal behaviours, verifying their stability and safety, while a simple external forced convection method can be utilised. To verify the model, finite element analysis is exploited to confirm the electromagnetic and thermal analysis results and provide a more exhaustive investigation

    Comparison of linear primary permanent magnet vernier machine and linear vernier hybrid machine

    Get PDF
    This journal issue contain selected papers from the 2014 IEEE International Magnetics (INTERMAG) ConferenceGQ - Electrical Machines for industrial and automotive applicationspublished_or_final_versio

    A High Thrust Force Spoke-Type Linear Permanent Magnet Vernier Machine with Reduced Thrust Force Ripple

    Get PDF
    Linear permanent magnet vernier machines (LP-MVMs) have become prevalent in direct-drive applications, such as wave energy harvesting systems and traction applications, owing to their distinctive merit of providing high thrust force at low speeds. In this paper, a novel structure of a double-sided spoke-type LPMVM is proposed, which takes advantage of the magnetic gearing effect. The proposed double-sided linear machine exploits spoke-type permanent magnets (PMs) and one of the stators is displaced as half of the stator tooth pitch to obtain the flux-focusing effect. The thrust force ripple of the proposed spoke-type LPMVM can be decreased by adjusting the stator end-teeth and mitigating the detrimental impact of the longitudinal effect. The proposed LPMVM with adjusted end-teeth offers a noteworthy potential in terms of high thrust force density, increased power factor, and reduced thrust force ripple, which makes it a suitable candidate for various direct-drive applications. The proposed LPMVM is compared with a conventional surface-mounted LPMVM and a spoke-type LP-MVM without adjusting end-teeth to verify the superiority of the new structure. Also, transient and steady-state thermal analyses of the proposed LPMVM are conducted to confirm its thermal stability. A two-dimensional finite element analysis (2D-FEA) is adopted to prove the outstanding characteristics of the proposed double-sided spoke-type linear vernier structure

    Design and analysis of linear stator permanent magnet vernier machines

    Get PDF
    In Poster Session GP: Permanent Magnet Motor II: poster no. GP-10This paper presents a new class of linear permanent magnet (PM) vernier machines which is suitable for low speed and high thrust force applications. The machine is composed of a tubular stator and a tubular translator. The stator consists of an iron core with salient teeth wound with 3-phase armature windings and PMs mounted on the surface of stator teeth. The translator is designed as a simple tubular iron core with salient teeth so that it is very robust to transmit high thrust force. By using the finite element method, the characteristics and performances of the proposed machine are analyzed and verified. © 2011 IEEE.published_or_final_versionThe IEEE International Magnetic Conference (INTERMAG2011), Taipei, Taiwan, 25-29 April 2011. In IEEE Transactions on Magnetics, 2011, v. 47 n. 10, p. 4219-422

    Design and Analysis of Magnetic-Geared Transmission Devices for Low-Speed High-Torque Application

    Get PDF
    corecore