5,374 research outputs found

    Adaptive design of delta sigma modulators

    Full text link
    In this thesis, a genetic algorithm based on differential evolution (DE) is used to generate delta sigma modulator (DSM) noise transfer functions (NTFs). These NTFs outperform those generated by an iterative approach described by Schreier and implemented in the delsig Matlab toolbox. Several lowpass and bandpass DSMs, as well as DSM\u27s designed specifically for and very low intermediate frequency (VLIF) receivers are designed using the algorithm developed in this thesis and compared to designs made using the delsig toolbox. The NTFs designed using the DE algorithm always have a higher dynamic range and signal to noise ratio than those designed using the delsig toolbox

    Study of state-of-the-art static inverter design Final report, 6 Jan. - 6 Jun. 1966

    Get PDF
    Multiple purpose inverter design based on phase demodulated inverter circuit selected from state-of-the-art assessment of ten inverter circuit

    Direct detection optical intersatellite link at 220 Mbps using AlGaAs laser diode and silicon APD with 4-ary PPM signaling

    Get PDF
    A newly developed 220 Mbps free-space 4-ary pulse position modulation (PPM) direct detection optical communication system is described. High speed GaAs integrated circuits were used to construct the PPM encoder and receiver electronic circuits. Both PPM slot and word timing recovery were provided in the PPM receiver. The optical transmitter consisted of an AlGaAs laser diode (Mitsubishi ML5702A, lambda=821nm) and a high speed driver unit. The photodetector consisted of a silicon avalanche photodiode (APD) (RCA30902S) preceded by an optical interference filter (delta lambda=10nm). Preliminary tests showed that the self-synchronized PPM receiver could achieve a receiver bit error rate of less than 10(exp -6) at 25 nW average received optical signal power or 360 photons per transmitted information bit. The relatively poor receiver sensitivity was believed to be caused by the insufficient electronic bandwidth of the APD preamplifier and the poor linearity of the preamplifier high frequency response

    Advanced digital modulation: Communication techniques and monolithic GaAs technology

    Get PDF
    Communications theory and practice are merged with state-of-the-art technology in IC fabrication, especially monolithic GaAs technology, to examine the general feasibility of a number of advanced technology digital transmission systems. Satellite-channel models with (1) superior throughput, perhaps 2 Gbps; (2) attractive weight and cost; and (3) high RF power and spectrum efficiency are discussed. Transmission techniques possessing reasonably simple architectures capable of monolithic fabrication at high speeds were surveyed. This included a review of amplitude/phase shift keying (APSK) techniques and the continuous-phase-modulation (CPM) methods, of which MSK represents the simplest case

    CMOS transceiver with baud rate clock recovery for optical interconnects

    Get PDF
    An efficient baud rate clock and data recovery architecture is applied to a double sampling/integrating front-end receiver for optical interconnects. Receiver performance is analyzed and projected for future technologies. This front-end allows use of a 1:5 demux architecture to achieve 5Gb/s in a 0.25 μm CMOS process. A 5:1 multiplexing transmitter is used to drive VCSELs for optical transmission. The transceiver chip consumes 145mW per link at 5Gb/s with a 2.5V supply

    Quaternary pulse position modulation electronics for free-space laser communications

    Get PDF
    The development of a high data-rate communications electronic subsystem for future application in free-space, direct-detection laser communications is described. The dual channel subsystem uses quaternary pulse position modulation (QPPM) and operates at a throughput of 650 megabits per second. Transmitting functions described include source data multiplexing, channel data multiplexing, and QPPM symbol encoding. Implementation of a prototype version in discrete gallium arsenide logic, radiofrequency components, and microstrip circuitry is presented

    Design considerations for a monolithic, GaAs, dual-mode, QPSK/QASK, high-throughput rate transceiver

    Get PDF
    A monolithic, GaAs, dual mode, quadrature amplitude shift keying and quadrature phase shift keying transceiver with one and two billion bits per second data rate is being considered to achieve a low power, small and ultra high speed communication system for satellite as well as terrestrial purposes. Recent GaAs integrated circuit achievements are surveyed and their constituent device types are evaluated. Design considerations, on an elemental level, of the entire modem are further included for monolithic realization with practical fabrication techniques. Numerous device types, with practical monolithic compatability, are used in the design of functional blocks with sufficient performances for realization of the transceiver

    The Analogue Computer as a Voltage-Controlled Synthesiser

    Get PDF
    This paper re-appraises the role of analogue computers within electronic and computer music and provides some pointers to future areas of research. It begins by introducing the idea of analogue computing and placing in the context of sound and music applications. This is followed by a brief examination of the classic constituents of an analogue computer, contrasting these with the typical modular voltage-controlled synthesiser. Two examples are presented, leading to a discussion on some parallels between these two technologies. This is followed by an examination of the current state-of-the-art in analogue computation and its prospects for applications in computer and electronic music
    • …
    corecore