11 research outputs found

    Frequency-spectra-based high coding capacity chipless RFID using an UWB-IR approach

    Get PDF
    A novel methodology is proposed to reliably predict the resonant characteristics of a multipatch backscatter-based radio frequency identification (RFID) chipless tag. An ultra-wideband impulsion radio (UWB-IR)-based reader interrogates the chipless tag with a UWB pulse, and analyzes the obtained backscatter in the time domain. The RFID system consists of a radar cross-section (RCS)-based chipless tag containing a square microstrip patch antenna array in which the chipless tag is interrogated with a UWB pulse by an UWB-IR-based reader. The main components of the backscattered signal, the structural mode, and the antenna mode were identified and their spectral quality was evaluated. The study revealed that the antenna-mode backscatter includes signal carrying information, while the structural mode backscatter does not include any tag information. The simulation findings were confirmed by experimental measurements obtained in an anechoic chamber environment using a 6-bit multipatch chipless RFID tag. Finally, the novel technique does not use calibration tags and can freely orient tags with respect to the reader.This research work was supported by FCT through grant SFRH/BD/116554/2016 and by the Center for Microelectromechanical Systems Research CMEMS-UMinho

    Orientation Independent Chipless RFID Tag Using Novel Trefoil Resonators

    Get PDF
    In this paper, a compact and fully passive bit encoding circuit, capable of operating as a chipless radio frequency identification (RFID) tag is presented. The structure consists of novel concentric trefoil-shaped slot resonators realized using Rogers RT/duroid (R) 5880 laminate, occupying a physical footprint of 13.55 x 13.55 mm(2). Each resonating element is associated with a particular data bit, having a 1:1 resonator-to-bit correspondence. Bit sequences are configured through introducing modifications in the geometric structure either by addition or exclusion of each nested slot resonator. Such changes manifest directly in the electromagnetic signature of the tag as presence or absence of corresponding resonant peaks. The proposed 10-bit tag offers minimized inter-resonator mutual coupling and insensitivity to changes in polarization and incident angles thereby demonstrating orientation independent functionality. Moreover, error-free encoding is achieved through stabilizing the shift in resonant frequencies for a variety of different geometric configurations and orientation of the structure. The tag operates within the license-free ultrawideband ranging from 5.4 to 10.4 GHz, providing spectral bit capacity and bit density of 2 bits/GHz and 5.44 bits/cm(2) respectively

    UWB Technology

    Get PDF
    Ultra Wide Band (UWB) technology has attracted increasing interest and there is a growing demand for UWB for several applications and scenarios. The unlicensed use of the UWB spectrum has been regulated by the Federal Communications Commission (FCC) since the early 2000s. The main concern in designing UWB circuits is to consider the assigned bandwidth and the low power permitted for transmission. This makes UWB circuit design a challenging mission in today's community. Various circuit designs and system implementations are published in this book to give the reader a glimpse of the state-of-the-art examples in this field. The book starts at the circuit level design of major UWB elements such as filters, antennas, and amplifiers; and ends with the complete system implementation using such modules

    Chipless RFID sensor systems for structural health monitoring

    Get PDF
    Ph. D. ThesisDefects in metallic structures such as crack and corrosion are major sources of catastrophic failures, and thus monitoring them is a crucial issue. As periodic inspection using the nondestructive testing and evaluation (NDT&E) techniques is slow, costly, limited in range, and cumbersome, novel methods for in-situ structural health monitoring (SHM) are required. Chipless radio frequency identification (RFID) is an emerging and attractive technology to implement the internet of things (IoT) based SHM. Chipless RFID sensors are not only wireless, passive, and low-cost as the chipped RFID counterpart, but also printable, durable, and allow for multi-parameter sensing. This thesis proposes the design and development of chipless RFID sensor systems for SHM, particularly for defect detection and characterization in metallic structures. Through simulation studies and experimental validations, novel metal-mountable chipless RFID sensors are demonstrated with different reader configurations and methods for feature extraction, selection, and fusion. The first contribution of this thesis is the design of a chipless RFID sensor for crack detection and characterization based on the circular microstrip patch antenna (CMPA). The sensor provides a 4-bit ID and a capability of indicating crack width and orientation simultaneously using the resonance frequency shift. The second contribution is a chipless RFID sensor designed based on the frequency selective surface (FSS) and feature fusion for corrosion characterization. The FSS-based sensor generates multiple resonance frequency features that can reveal corrosion progression, while feature fusion is applied to enhance the sensitivity and reliability of the sensor. The third contribution deals with robust detection and characterization of crack and corrosion in a realistic environment using a portable reader. A multi-resonance chipless RFID sensor is proposed along with the implementation of a portable reader using an ultra-wideband (UWB) radar module. Feature extraction and selection using principal component analysis (PCA) is employed for multi-parameter evaluation. Overall, chipless RFID sensors are small, low-profile, and can be used to quantify and characterize surface crack and corrosion undercoating. Furthermore, the multi-resonance characteristics of chipless RFID sensors are useful for integrating ID encoding and sensing functionalities, enhancing the sensor performance, as well as for performing multi-parameter analysis of defects. The demonstrated system using a portable reader shows the capability of defects characterization from a 15-cm distance. Hence, chipless RFID sensor systems have great potential to be an alternative sensing method for in-situ SHM.Indonesia Endowment Fund for Education (LPDP

    Passive Planar Microwave Devices

    Get PDF
    The aim of this book is to highlight some recent advances in microwave planar devices. The development of planar technologies still generates great interest because of their many applications in fields as diverse as wireless communications, medical instrumentation, remote sensing, etc. In this book, particular interest has been focused on an electronically controllable phase shifter, wireless sensing, a multiband textile antenna, a MIMO antenna in microstrip technology, a miniaturized spoof plasmonic antipodal Vivaldi antenna, a dual-band balanced bandpass filter, glide-symmetric structures, a transparent multiband antenna for vehicle communications, a multilayer bandpass filter with high selectivity, microwave planar cutoff probes, and a wideband transition from microstrip to ridge empty substrate integrated waveguide

    1-D broadside-radiating leaky-wave antenna based on a numerically synthesized impedance surface

    Get PDF
    A newly-developed deterministic numerical technique for the automated design of metasurface antennas is applied here for the first time to the design of a 1-D printed Leaky-Wave Antenna (LWA) for broadside radiation. The surface impedance synthesis process does not require any a priori knowledge on the impedance pattern, and starts from a mask constraint on the desired far-field and practical bounds on the unit cell impedance values. The designed reactance surface for broadside radiation exhibits a non conventional patterning; this highlights the merit of using an automated design process for a design well known to be challenging for analytical methods. The antenna is physically implemented with an array of metal strips with varying gap widths and simulation results show very good agreement with the predicted performance

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Development of a chipless RFID based aerospace structural health monitoring sensor system

    Get PDF
    Chipless Radio Frequency Identification (RFID) is modern wireless technology that has been earmarked as being suitable for low-cost item tagging/tracking. These devices do not require integrated circuitry or a battery and thus, are not only are cheap, but also easy to manufacture and potentially very robust. A great deal of attention is also being put on the possibility of giving these tags the ability to sense various environmental stimuli such as temperature and humidity. This work focusses on the potential use of chipless RFID as a sensor technology for aerospace Structural Health Monitoring. The project is focussed on the sensing of mechanical strain and temperature, with an emphasis placed on fabrication simplicity, so that the final sensor designs could be potentially fabricated in-situ using existing printing technologies. Within this project, a variety of novel chipless RFID strain and temperature sensors have been designed, fabricated and tested. A thorough discussion is also presented on the topic of strain sensor cross sensitivity, which places emphasis on issues like, transverse strain, dielectric constant variations and thermal swelling. Additionally, an exploration into other key technological challenges was also performed, with a focus on challenges such as: accurate and reliable stimulus detection, sensor polarization and multi-sensor support. Several key areas of future research have also been identified and outlined, with aims related to: Enhancing strain sensor fabrication simplicity, enhancing temperature sensor sensitivity and simplicity and developing a fully functional interrogation system

    Applications of Antenna Technology in Sensors

    Get PDF
    During the past few decades, information technologies have been evolving at a tremendous rate, causing profound changes to our world and to our ways of living. Emerging applications have opened u[ new routes and set new trends for antenna sensors. With the advent of the Internet of Things (IoT), the adaptation of antenna technologies for sensor and sensing applications has become more important. Now, the antennas must be reconfigurable, flexible, low profile, and low-cost, for applications from airborne and vehicles, to machine-to-machine, IoT, 5G, etc. This reprint aims to introduce and treat a series of advanced and emerging topics in the field of antenna sensors

    Design and Modelling of Wireless Power Transfer and Energy Harvesting Systems

    Get PDF
    The escalation of the Internet-of-Everything topicality has motivated an increased interest in both academia and industry research for efficient solutions enabling self-sustained smart operations. From the maintenance point of view, indeed, battery-less strategies represent the most valuable way for distributed zero-power standalone electronics. With this purpose, different scavenging techniques are being adopted, gathering energy from different sources such as mechanical, solar, thermal and electromagnetic waves. Due to the wide spread of wireless communication systems, the latter technology has recently benefited a renewed interest. This Ph.D. research activity has been focused on the investigation of new efficient solutions for radiofrequency energy harvesting and wireless power transmission techniques, aiming at improving the state of the art, by also taking into account the imperative necessity of eco-friendly materials for the development of green electronics. The combination of radiofrequency energy harvesting and ultra-wideband techniques is also proposed as possible candidate for future RFID systems. These functionalities are integrated in a novel, compact and low-profile tag, whose details are provided thoroughly from both electromagnetic and nonlinear circuit viewpoints. Results validation is provided through experimental characterization. Compatibility with the environment is assured by implementation with recyclable material. This concept is then extended with the investigation of more elaborated energy scavenging architectures, including rectenna arrays. Finally, a near-field wireless power transmission system is presented on low-cost materials, therefore suitable for possible mass-market deployment
    corecore