1,119 research outputs found

    A Unlinkable Delegation-based Authentication Protocol with Users’ Non-repudiation for Portable Communication Systems

    Get PDF
    [[abstract]]For portable communication systems, the delegation-based authentication protocol provides efficient subsequent login authentication, data confidentiality, user privacy protection, and non-repudiation. However, in all proposed protocols, the non-repudiation of mobile users is based on an unreasonable assumption that home location registers are always trusted. To weaken this assumption and enhance the nonrepudiation of mobile users, a new delegation-based authentication protocol is proposed. The new protocol also removes the exhaustive search problem of the subsequent login authentication to improve the subsequent login authentication performance. Moreover, the user unlinkability in the subsequent login authentication is also provided to enhance the user identity privacy protection.[[incitationindex]]EI[[incitationindex]]CEPS[[booktype]]紙

    Mobile application able to analyse the Internet connections

    Get PDF
    The wide use of wireless networks in every aspect of our life has risen new challenges andsituations that affect the majority of the population around the globe. Issues such asinterferences between each network, fading or security attacks have to be bearded in mindwhen a wireless network is set up or when a user wants to establish connection with one.Therefore the goal of this study is the use and development of a mobile application that is ableto analyse the wireless networks that the device, a smartphone in this case. With theinformation obtained from the application the user should be able to find possible solution tothe challenges that may arise and to improve the quality of the service that he or she is usingin different environments with different characteristics. The testing of the application involvedthe obtainment of information in three different scenarios, the results of the three scenarioswere satisfactory. In all three scenarios the environment could be analysed successfully andsolutions could be given to improve the connectivity to each of the access points. <br /

    SECURITY MEASUREMENT FOR LTE/SAE NETWORK DURING SINGLE RADIO VOICE CALL CONTINUITY (SRVCC).

    Get PDF
    Voice has significant place in mobile communication networks. Though data applications have extensively gained in importance over the years but voice is still a major source of revenue for mobile operators. It is obvious that voice will remain an important application even in the era of Long Term Evolution (LTE). Basically LTE is an all-IP data-only transport technology using packet switching. Therefore, it introduces challenges to satisfy quality of service expectations for circuit-switched mobile telephony and SMS for LTE capable smartphones, while being served on the LTE network. Since 2013, mobile operators have been busy deploying Voice Over LTE (VoLTE). They are relying on a VoLTE technology called Single Radio Voice Call Continuity (SRVCC) for seamless handover between packet-switch domain to circuit-switch domain or vice versa. The aim of thesis is to review and identify the security measurement during SRVCC and verify test data for ciphering and integrity algorithm.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Inter-Domain Authentication for Seamless Roaming in Heterogeneous Wireless Networks

    Get PDF
    The convergence of diverse but complementary wireless access technologies and inter-operation among administrative domains have been envisioned as crucial for the next generation wireless networks that will provide support for end-user devices to seamlessly roam across domain boundaries. The integration of existing and emerging heterogeneous wireless networks to provide such seamless roaming requires the design of a handover scheme that provides uninterrupted service continuity while facilitating the establishment of authenticity of the entities involved. The existing protocols for supporting re-authentication of a mobile node during a handover across administrative domains typically involve several round trips to the home domain, and hence introduce long latencies. Furthermore, the existing methods for negotiating roaming agreements to establish inter-domain trust rely on a lengthy manual process, thus, impeding seamless roaming across multiple domains in a truly heterogeneous wireless network. In this thesis, we present a new proof-token based authentication protocol that supports quick re-authentication of a mobile node as it moves to a new foreign domain without involving communication with the home domain. The proposed proof-token based protocol can also support establishment of spontaneous roaming agreements between a pair of domains that do not already have a direct roaming agreement, thus allowing flexible business models to be supported. We describe details of the new authentication architecture, the proposed protocol, which is based on EAP-TLS and compare the proposed protocol with existing protocols

    Mobihealth: mobile health services based on body area networks

    Get PDF
    In this chapter we describe the concept of MobiHealth and the approach developed during the MobiHealth project (MobiHealth, 2002). The concept was to bring together the technologies of Body Area Networks (BANs), wireless broadband communications and wearable medical devices to provide mobile healthcare services for patients and health professionals. These technologies enable remote patient care services such as management of chronic conditions and detection of health emergencies. Because the patient is free to move anywhere whilst wearing the MobiHealth BAN, patient mobility is maximised. The vision is that patients can enjoy enhanced freedom and quality of life through avoidance or reduction of hospital stays. For the health services it means that pressure on overstretched hospital services can be alleviated

    Analysis of GPRS Limitations

    Get PDF
    The General Packet Radio Service (GPRS) is a new standard for mobile data communications, which is implemented under the existing infrastructure of Global System for Mobile Communications (GSM). The promise capability of handling Internet Protocol traffic enables instant and constant connection to global network regardless of location and time. With its packet-based nature, the new technology facilitates new applications in wireless communications that have not been available previously. Nonetheless, there are numbers of limitations that have to be taken into consideration b~fore this technology can be implemented commercially. Despite all arguments and challenges, the GPRS system is here to stay and evolving towards the third generation mobile communications. This report covers the background of the GPRS and discusses the issues involved in implementing this current technology besides considering the deployment of third generation networks beyond GPRS
    corecore