1,932 research outputs found

    Performance Analysis and Enhancement of Multiband OFDM for UWB Communications

    Full text link
    In this paper, we analyze the frequency-hopping orthogonal frequency-division multiplexing (OFDM) system known as Multiband OFDM for high-rate wireless personal area networks (WPANs) based on ultra-wideband (UWB) transmission. Besides considering the standard, we also propose and study system performance enhancements through the application of Turbo and Repeat-Accumulate (RA) codes, as well as OFDM bit-loading. Our methodology consists of (a) a study of the channel model developed under IEEE 802.15 for UWB from a frequency-domain perspective suited for OFDM transmission, (b) development and quantification of appropriate information-theoretic performance measures, (c) comparison of these measures with simulation results for the Multiband OFDM standard proposal as well as our proposed extensions, and (d) the consideration of the influence of practical, imperfect channel estimation on the performance. We find that the current Multiband OFDM standard sufficiently exploits the frequency selectivity of the UWB channel, and that the system performs in the vicinity of the channel cutoff rate. Turbo codes and a reduced-complexity clustered bit-loading algorithm improve the system power efficiency by over 6 dB at a data rate of 480 Mbps.Comment: 32 pages, 10 figures, 1 table. Submitted to the IEEE Transactions on Wireless Communications (Sep. 28, 2005). Minor revisions based on reviewers' comments (June 23, 2006

    Indoor wireless communications and applications

    Get PDF
    Chapter 3 addresses challenges in radio link and system design in indoor scenarios. Given the fact that most human activities take place in indoor environments, the need for supporting ubiquitous indoor data connectivity and location/tracking service becomes even more important than in the previous decades. Specific technical challenges addressed in this section are(i), modelling complex indoor radio channels for effective antenna deployment, (ii), potential of millimeter-wave (mm-wave) radios for supporting higher data rates, and (iii), feasible indoor localisation and tracking techniques, which are summarised in three dedicated sections of this chapter

    Communication Subsystems for Emerging Wireless Technologies

    Get PDF
    The paper describes a multi-disciplinary design of modern communication systems. The design starts with the analysis of a system in order to define requirements on its individual components. The design exploits proper models of communication channels to adapt the systems to expected transmission conditions. Input filtering of signals both in the frequency domain and in the spatial domain is ensured by a properly designed antenna. Further signal processing (amplification and further filtering) is done by electronics circuits. Finally, signal processing techniques are applied to yield information about current properties of frequency spectrum and to distribute the transmission over free subcarrier channels

    On Optimal Turbo Decoding of Wideband MIMO-OFDM Systems Under Imperfect Channel State Information

    Full text link
    We consider the decoding of bit interleaved coded modulation (BICM) applied to both multiband and MIMO OFDM systems for typical scenarios where only a noisy (possibly very bad) estimate of the channel is provided by sending a limited number of pilot symbols. First, by using a Bayesian framework involving the channel a posteriori density, we adopt a practical decoding metric that is robust to the presence of channel estimation errors. Then this metric is used in the demapping part of BICM multiband and MIMO OFDM receivers. We also compare our results with the performance of a mismatched decoder that replaces the channel by its estimate in the decoding metric. Numerical results over both realistic UWB and theoretical Rayleigh fading channels show that the proposed method provides significant gain in terms of bit error rate compared to the classical mismatched detector, without introducing any additional complexity

    A Novel Frequency Synchronization Algorithm and its Cramer Rao Bound in Practical UWB Environment for MB-OFDM Systems

    Get PDF
    This paper presents an efficient time-domain coarse frequency offset (FO) synchronizer (TCFS) for multi-band orthogonal frequency division multiplexing (MB-OFDM) systems effective for practical ultra-wideband (UWB) environment. The proposed algorithm derives its estimates based on phase differences in the received subcarrier signals of several successive OFDM symbols in the preamble. We consider different carrier FOs and different channel responses in different bands to keep the analysis and simulation compatible for practical multiband UWB scenario. Performance of the algorithm is studied by means of bit error rate (BER) analysis of MBOFDM system. We derive the Cramer Rao lower bound (CRLB) of the estimation error variance and compare it with the simulated error variance both in additive white Gaussian noise and UWB channel model (CM) environments, CM1-CM4. Both analysis and simulation show that TCFS can estimate coarse carrier FO more efficiently in UWB fading channels for MB-OFDM applications compared to the other reported results in literature. Also, computational complexity of the proposed algorithm is analyzed for its usability evaluation

    A Study of Channel Estimation in Multi-Band OFDM UWB Systems

    Full text link
    In this paper, the channel estimation techniques for multiband (MB) OFDM ultra-wideband (UWB) wireless communications are investigated. By combining orthogonal frequency-division multiplexing (OFDM) with multi-band, the MB-OFDM systems can capture multipath energy more efficiently than single-band direct sequence UWB (DS-UWB). However, most researches for UWB channel estimation are focused on the latter. Through the analysis of architecture, signal and channel model of MB-OFDM UWB wireless systems, we studied the channel estimation techniques based on preamble training sequences and pilot sub-carriers respectively. Further more, the linear estimations of least square (LS) and minimum mean square error (MMSE) are analysed and compared under different UWB channel conditions. The characteristic of estimation error changing with the SNR is also discussed. The estimation error includes the impact of interpolation error and channel noise

    Ultra wideband: applications, technology and future perspectives

    Get PDF
    Ultra Wide Band (UWB) wireless communications offers a radically different approach to wireless communication compared to conventional narrow band systems. Global interest in the technology is huge. This paper reports on the state of the art of UWB wireless technology and highlights key application areas, technological challenges, higher layer protocol issues, spectrum operating zones and future drivers. The majority of the discussion focuses on the state of the art of UWB technology as it is today and in the near future

    Sub-sampled OFDM based sub-band ultra-wideband system

    Get PDF
    In sub-band ultra-wideband (SUWB) systems, the use of spreading codes in conjunction with sub-banding enables energy efficient reduced sampling rate receiver designs. In this work, the orthogonal frequency division multiplexing (OFDM) technique is proposed for SUWB systems as a means to mitigate the multipath fading effects of the channel. The OFDM demodulation performed at the sub-sampled rate with reduced number of discrete Fourier transform (DFT) points provides scope for low power receiver implementations. Moreover, OFDM improves the flexibility as bandwidth resources can be allocated with improved granularity at integral multiples of the OFDM sub-channel bandwidth. The requisite correlation properties of the spreading codes is relaxed in the proposed OFDM-SUWB system and more number of spreading codes can be used when compared to the existing SUWB system. Also, a simple channel estimation method exploiting the low complexity advantage of the inherent spreading code based receiver is proposed. Simulation results in terms of the bit error rate (BER) performance are presented over the IEEE 802.15.4a channel models and also comparisons with the multi-band OFDM (MB-OFDM) system are made demonstrating the usefulness of the proposed scheme
    • 

    corecore