762 research outputs found

    Experimental investigation of high-dimensional quantum key distribution protocols with twisted photons

    Get PDF
    Quantum key distribution is on the verge of real world applications, where perfectly secure information can be distributed among multiple parties. Several quantum cryptographic protocols have been theoretically proposed and independently realized in different experimental conditions. Here, we develop an experimental platform based on high-dimensional orbital angular momentum states of single photons that enables implementation of multiple quantum key distribution protocols with a single experimental apparatus. Our versatile approach allows us to experimentally survey different classes of quantum key distribution techniques, such as the 1984 Bennett \& Brassard (BB84), tomographic protocols including the six-state and the Singapore protocol, and to investigate, for the first time, a recently introduced differential phase shift (Chau15) protocol using twisted photons. This enables us to experimentally compare the performance of these techniques and discuss their benefits and deficiencies in terms of noise tolerance in different dimensions.Comment: 13 pages, 4 figures, 1 tabl

    Detector decoy quantum key distribution

    Full text link
    Photon number resolving detectors can enhance the performance of many practical quantum cryptographic setups. In this paper, we employ a simple method to estimate the statistics provided by such a photon number resolving detector using only a threshold detector together with a variable attenuator. This idea is similar in spirit to that of the decoy state technique, and is specially suited for those scenarios where only a few parameters of the photon number statistics of the incoming signals have to be estimated. As an illustration of the potential applicability of the method in quantum communication protocols, we use it to prove security of an entanglement based quantum key distribution scheme with an untrusted source without the need of a squash model and by solely using this extra idea. In this sense, this detector decoy method can be seen as a different conceptual approach to adapt a single photon security proof to its physical, full optical implementation. We show that in this scenario the legitimate users can now even discard the double click events from the raw key data without compromising the security of the scheme, and we present simulations on the performance of the BB84 and the 6-state quantum key distribution protocols.Comment: 27 pages, 7 figure

    A Talk on Quantum Cryptography, or How Alice Outwits Eve

    Get PDF
    Alice and Bob wish to communicate without the archvillainess Eve eavesdropping on their conversation. Alice, decides to take two college courses, one in cryptography, the other in quantum mechanics. During the courses, she discovers she can use what she has just learned to devise a cryptographic communication system that automatically detects whether or not Eve is up to her villainous eavesdropping. Some of the topics discussed are Heisenberg's Uncertainty Principle, the Vernam cipher, the BB84 and B92 cryptographic protocols. The talk ends with a discussion of some of Eve's possible eavesdropping strategies, opaque eavesdropping, translucent eavesdropping, and translucent eavesdropping with entanglement.Comment: 31 pages, 8 figures. Revised version of a paper published in "Coding Theory, and Cryptography: From Geheimscheimschreiber and Enigma to Quantum Theory," (edited by David Joyner), Springer-Verlag, 1999 (pp. 144-174). To be published with the permission of Springer-Verlag in an AMS PSAPM Short Course volume entitled "Quantum Computation.
    corecore