279 research outputs found

    Modeling and Analysis of the Performance of Exascale Photonic Networks

    Full text link
    "This is the peer reviewed version of the following article: Duro, José, Jose A. Pascual, Salvador Petit, Julio Sahuquillo, and María E. Gómez. 2018. Modeling and Analysis of the Performance of Exascale Photonic Networks. Concurrency and Computation: Practice and Experience 31 (21). Wiley. doi:10.1002/cpe.4773, which has been published in final form at https://doi.org/10.1002/cpe.4773. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."[EN] Photonics technology has become a promising and viable alternative for both on-chip and off-chip interconnection networks of future Exascale systems. Nevertheless, this technology is not mature enough yet in this context, so research efforts focusing on photonic networks are still required to achieve realistic suitable network implementations. In this regard, system-level photonic network simulators can help guide designers to assess the multiple design choices. Most current research is done on electrical network simulators, whose components work widely different from photonics components. In this work, we summarize and compare the working behavior of both technologies which includes the use of optical routers, wavelength-division multiplexing and circuit switching among others. After implementing them into a well-known simulation framework, an extensive simulation study has been carried out using realistic photonic network configurations with synthetic and realistic traffic. Experimental results show that, compared to electrical networks, optical networks can reduce the execution time of the studied real workloads in almost one order of magnitude. Our study also reveals that the photonic configuration highly impacts on the network performance, being the bandwidth per channel and the message length the most important parameters.This work was supported by the ExaNeSt project, funded by the European Union's Horizon 2020 Research and Innovation Program under grant 671553, and by the Spanish Ministerio de Economía y Competitividad (MINECO) and Plan E funds under grant TIN2015-66972-C5-1-R. Pascual was supported by a HiPEAC Collaboration Grant.Duro-Gómez, J.; Pascual Pérez, JA.; Petit Martí, SV.; Sahuquillo Borrás, J.; Gómez Requena, ME. (2019). Modeling and Analysis of the Performance of Exascale Photonic Networks. Concurrency and Computation Practice and Experience. 31(21):1-12. https://doi.org/10.1002/cpe.4773S1123121Top500 website. Accessed January2018.Kodi, A. K., Neel, B., & Brantley, W. C. (2014). Photonic Interconnects for Exascale and Datacenter Architectures. IEEE Micro, 34(5), 18-30. doi:10.1109/mm.2014.62Rumley, S., Nikolova, D., Hendry, R., Li, Q., Calhoun, D., & Bergman, K. (2015). Silicon Photonics for Exascale Systems. Journal of Lightwave Technology, 33(3), 547-562. doi:10.1109/jlt.2014.2363947Shacham, A., Bergman, K., & Carloni, L. P. (2008). Photonic Networks-on-Chip for Future Generations of Chip Multiprocessors. IEEE Transactions on Computers, 57(9), 1246-1260. doi:10.1109/tc.2008.78Batten, C., Joshi, A., Orcutt, J., Khilo, A., Moss, B., Holzwarth, C. W., … Asanovic, K. (2009). Building Many-Core Processor-to-DRAM Networks with Monolithic CMOS Silicon Photonics. IEEE Micro, 29(4), 8-21. doi:10.1109/mm.2009.60WernerS NavaridasJ LujánM.Designing low‐power low‐latency networks‐on‐chip by optimally combining electrical and optical links. Paper presented at: 23rd IEEE International Symposium on High Performance Computer Architecture (HPCA);2016;Austin TX.PucheJ LechagoS PetitS GómezME SahuquilloJ.Accurately modeling a photonic NoC in a detailed CMP simulation framework. Paper presented at: 2016 International Conference on High Performance Computing & Simulation (HPCS);2016;Innsbruck Austria.ChenG ChenH HaurylauM et al.On‐chip copper‐based vs. optical interconnects: delay uncertainty latency power and bandwidth density comparative predictions. Paper presented at: 2006 International Interconnect Technology Conference;2006;Burlingame CA.KatevenisM ChrysosN MarazakisM et al.The ExaNeSt project: Interconnects storage and packaging for exascale systems. Paper presented at: 2016 Euromicro Conference on Digital System Design (DSD);2016;Limassol Cyprus.ConcattoC PascualJA NavaridasJ et al.A CAM-Free Exascalable HPC Router for Low-Energy Communications. Paper presented at: 31st International Conference on Architecture of Computing Systems (ARCS);2018.DuanG‐H FedeliJ‐M KeyvaniniaS ThomsonD et al.10 Gb/s integrated tunable hybrid III‐V/si laser and silicon Mach‐Zehnder modulator. Paper presented at: European Conference and Exhibition on Optical Communications;2012;Amsterdam The Netherlands.DuanGH JanyC Le LiepvreAL et al.Integrated hybrid III‐V/si laser and transmitter. Paper presented at: 2012 International Conference on Indium Phosphide and Related Materials;2012;Santa Barbara CA.Soref, R., & Bennett, B. (1987). Electrooptical effects in silicon. IEEE Journal of Quantum Electronics, 23(1), 123-129. doi:10.1109/jqe.1987.1073206Liu, A., Liao, L., Rubin, D., Nguyen, H., Ciftcioglu, B., Chetrit, Y., … Paniccia, M. (2007). High-speed optical modulation based on carrier depletion in a silicon waveguide. Optics Express, 15(2), 660. doi:10.1364/oe.15.000660Thomson, D. J., Gardes, F. Y., Hu, Y., Mashanovich, G., Fournier, M., Grosse, P., … Reed, G. T. (2011). High contrast 40Gbit/s optical modulation in silicon. Optics Express, 19(12), 11507. doi:10.1364/oe.19.011507Bergman, K., Carloni, L. P., Biberman, A., Chan, J., & Hendry, G. (2014). Photonic Network-on-Chip Design. Integrated Circuits and Systems. doi:10.1007/978-1-4419-9335-9Dong, P., Chen, L., Xie, C., Buhl, L. L., & Chen, Y.-K. (2012). 50-Gb/s silicon quadrature phase-shift keying modulator. Optics Express, 20(19), 21181. doi:10.1364/oe.20.021181DongP LiuX SethumadhavanC et al.224‐Gb/s PDM‐16‐QAM modulator and receiver based on silicon photonic integrated circuits. Paper presented at: Optical Fiber Communication Conference/National Fiber Optic Engineers Conference;2013;Anaheim CA.Navaridas, J., Miguel-Alonso, J., Pascual, J. A., & Ridruejo, F. J. (2011). Simulating and evaluating interconnection networks with INSEE. Simulation Modelling Practice and Theory, 19(1), 494-515. doi:10.1016/j.simpat.2010.08.008Lu, L., Zhao, S., Zhou, L., Li, D., Li, Z., Wang, M., … Chen, J. (2016). 16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers. Optics Express, 24(9), 9295. doi:10.1364/oe.24.009295DuroJ PetitS SahuquilloJ GómezME.Modeling a photonic network for exascale computing. Paper presented at: 2017 International Conference on High Performance Computing & Simulation (HPCS);2017;Genoa Italy.Xi, K., Kao, Y.-H., & Chao, H. J. (2012). A Petabit Bufferless Optical Switch for Data Center Networks. Optical Interconnects for Future Data Center Networks, 135-154. doi:10.1007/978-1-4614-4630-9_8KimJ DallyWJ ScottS AbtsD.Technology‐driven highly‐scalable dragonfly topology. Paper presented at: 35th International Symposium on Computer Architecture (ISCA);2008;Beijing China.Essiambre, R.-J., & Tkach, R. W. (2012). Capacity Trends and Limits of Optical Communication Networks. Proceedings of the IEEE, 100(5), 1035-1055. doi:10.1109/jproc.2012.2182970Temprana, E., Myslivets, E., Kuo, B. P.-P., Liu, L., Ataie, V., Alic, N., & Radic, S. (2015). Overcoming Kerr-induced capacity limit in optical fiber transmission. Science, 348(6242), 1445-1448. doi:10.1126/science.aab1781Springel, V. (2005). The cosmological simulation code gadget-2. Monthly Notices of the Royal Astronomical Society, 364(4), 1105-1134. doi:10.1111/j.1365-2966.2005.09655.xPlimpton, S. (1995). Fast Parallel Algorithms for Short-Range Molecular Dynamics. Journal of Computational Physics, 117(1), 1-19. doi:10.1006/jcph.1995.1039Ben‐ItzhakY ZahaviE CidonI KolodnyA.HNOCS: Modular open‐source simulator for heterogeneous NoCs. Paper presented at: 2012 International Conference on Embedded Computer Systems (SAMOS);2012;Samos Greece.HossainH AhmedM Al‐NayeemA IslamTZ AkbarMM.Gpnocsim‐a general purpose simulator for network‐on‐chip. Paper presented at: 2007 International Conference on Information and Communication Technology;2007;Dhaka Bangladesh.JainL Al‐HashimiB GaurMS LaxmiV NarayananA.NIRGAM: A simulator for NoC interconnect routing and application modeling. Paper presented at: Design Automation and Test in Europe Conference;2007;Nice France.ChanJ HendryG BibermanA BergmanK CarloniLP.PhoenixSim: A simulator for physical‐layer analysis of chip‐scale photonic interconnection networks. In: Proceedings of the Conference on Design Automation and Test in Europe;2010;Dresden Germany.RumleyS BahadoriM WenK NikolovaD BergmanK.PhoenixSim: crosslayer design and modeling of silicon photonic interconnects. In: Proceedings of the 1st International Workshop on Advanced Interconnect Solutions and Technologies for Emerging Computing Systems;2016;Prague Czech Republic.VargaA HornigR.An overview of the OMNeT++ simulation environment. In: Proceedings of the 1st International Conference on Simulation Tools and Techniques for Communications Networks and Systems & Workshops;2008;Marseille France.SunC ChenCHO KurianG et al.DSENT‐a tool connecting emerging photonics with electronics for opto‐electronic networks‐on‐chip modeling. Paper presented at: 2012 IEEE/ACM Sixth International Symposium on Networks‐on‐Chip;2012;Copenhagen Denmark.Ma, X., Yu, J., Hua, X., Wei, C., Huang, Y., Yang, L., … Yang, J. (2014). LioeSim: A Network Simulator for Hybrid Opto-Electronic Networks-on-Chip Analysis. Journal of Lightwave Technology, 32(22), 4301-4310. doi:10.1109/jlt.2014.2356515KahngAB LiB PehL‐S SamadiK.ORION 2.0: a fast and accurate NoC power and area model for early‐stage design space exploration. In: Proceedings of the Conference on Design Automation and Test in Europe;2009;Nice France.Chan, J., Hendry, G., Bergman, K., & Carloni, L. P. (2011). Physical-Layer Modeling and System-Level Design of Chip-Scale Photonic Interconnection Networks. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 30(10), 1507-1520. doi:10.1109/tcad.2011.215715

    Laser-pushed light sails, a possible way for interstellar exploration

    Get PDF
    openIn questo studio viene preso in esame il concetto di Laser-driven light sails, il quale è una delle più promettenti proposte avanzate per superare le sfide poste dal viaggio interstellare. Questo è un metodo di propulsione che si basa sul fenomeno della pressione di radiazione: un corpo colpito da una radiazione elettromagnetica subisce una pressione. Questo meccanismo viene applicato attraverso l’utilizzo di un laser ad alta potenza, il quale raggio impatta sulla superficie di una sonda ultraleggera, formata da una vela di grandi dimensioni e da un piccolo carico, permettendole di raggiungere velocità relativistiche in un corto lasso di tempo. Questo concetto viene successivamente comparato con altri metodi di propulsione laser, valutandone i vari vantaggi e svantaggi. Vengono poi derivati due modelli matematici di moto, i quali sono confrontati dimostrando come l’approssimazione classica non è sufficiente ed è quindi necessario tener conto della correzione relativistica. Si deriva la relazione tra la distanza finale di accelerazione e le caratteristiche del sistema laser di lancio, dalla quale si ottiene il punto di massima efficienza attraverso cui può essere calcolata la potenza necessaria per raggiungere una data velocità finale. Obiettivo, questo, che dipende dalle caratteristiche strutturali della sonda in questione. Si cerca infine di massimizzarne l’efficienza rispettando i vincoli ottici e calcolando quelli termodinamici, i quali determineranno le caratteristiche necessarie per il materiale adeguato alla vela.This study examines the concept of Laser-driven light sails, which is one of the most promising proposals put forward to overcome the challenges posed by interstellar travel. This is a propulsion method based on the phenomenon of radiation pressure where a body stricken by an electromagnetic radiation undergoes a pressure. Laser-driven light sails generate thrust using a high-power laser, whose beam impacts the surface of an ultralight probe, formed by a large sail and a small payload, allowing them to reach relativistic speeds in a short amount of time. This concept is then compared with other methods of laser propulsion, evaluating the various advantages and disadvantages. Two mathematical models of motion are then derived, which are then compared by showing that the classical approximation is not sufficient, and it is therefore necessary to consider the relativistic correction. The relationship between the final acceleration distance and the characteristics of the launch laser system is derived, from which we obtain the point of maximum efficiency through which the necessary power to reach a given final speed can be calculated. This objective depends on the structural characteristics of the probe in question. Finally, we try to maximize its efficiency by abiding the optical constraints and calculating the thermodynamic ones, which will determine the necessary characteristics of the material suitable for the sail
    • …
    corecore