396 research outputs found

    Hardware Acceleration of Video analytics on FPGA using OpenCL

    Get PDF
    abstract: With the exponential growth in video content over the period of the last few years, analysis of videos is becoming more crucial for many applications such as self-driving cars, healthcare, and traffic management. Most of these video analysis application uses deep learning algorithms such as convolution neural networks (CNN) because of their high accuracy in object detection. Thus enhancing the performance of CNN models become crucial for video analysis. CNN models are computationally-expensive operations and often require high-end graphics processing units (GPUs) for acceleration. However, for real-time applications in an energy-thermal constrained environment such as traffic management, GPUs are less preferred because of their high power consumption, limited energy efficiency. They are challenging to fit in a small place. To enable real-time video analytics in emerging large scale Internet of things (IoT) applications, the computation must happen at the network edge (near the cameras) in a distributed fashion. Thus, edge computing must be adopted. Recent studies have shown that field-programmable gate arrays (FPGAs) are highly suitable for edge computing due to their architecture adaptiveness, high computational throughput for streaming processing, and high energy efficiency. This thesis presents a generic OpenCL-defined CNN accelerator architecture optimized for FPGA-based real-time video analytics on edge. The proposed CNN OpenCL kernel adopts a highly pipelined and parallelized 1-D systolic array architecture, which explores both spatial and temporal parallelism for energy efficiency CNN acceleration on FPGAs. The large fan-in and fan-out of computational units to the memory interface are identified as the limiting factor in existing designs that causes scalability issues, and solutions are proposed to resolve the issue with compiler automation. The proposed CNN kernel is highly scalable and parameterized by three architecture parameters, namely pe_num, reuse_fac, and vec_fac, which can be adapted to achieve 100% utilization of the coarse-grained computation resources (e.g., DSP blocks) for a given FPGA. The proposed CNN kernel is generic and can be used to accelerate a wide range of CNN models without recompiling the FPGA kernel hardware. The performance of Alexnet, Resnet-50, Retinanet, and Light-weight Retinanet has been measured by the proposed CNN kernel on Intel Arria 10 GX1150 FPGA. The measurement result shows that the proposed CNN kernel, when mapped with 100% utilization of computation resources, can achieve a latency of 11ms, 84ms, 1614.9ms, and 990.34ms for Alexnet, Resnet-50, Retinanet, and Light-weight Retinanet respectively when the input feature maps and weights are represented using 32-bit floating-point data type.Dissertation/ThesisMasters Thesis Electrical Engineering 201

    Optimising algorithm and hardware for deep neural networks on FPGAs

    Get PDF
    This thesis proposes novel algorithm and hardware optimisation approaches to accelerate Deep Neural Networks (DNNs), including both Convolutional Neural Networks (CNNs) and Bayesian Neural Networks (BayesNNs). The first contribution of this thesis is to propose an adaptable and reconfigurable hardware design to accelerate CNNs. By analysing the computational patterns of different CNNs, a unified hardware architecture is proposed for both 2-Dimension and 3-Dimension CNNs. The accelerator is also designed with runtime adaptability, which adopts different parallelism strategies for different convolutional layers at runtime. The second contribution of this thesis is to propose a novel neural network architecture and hardware design co-optimisation approach, which improves the performance of CNNs at both algorithm and hardware levels. Our proposed three-phase co-design framework decouples network training from design space exploration, which significantly reduces the time-cost of the co-optimisation process. The third contribution of this thesis is to propose an algorithmic and hardware co-optimisation framework for accelerating BayesNNs. At the algorithmic level, three categories of structured sparsity are explored to reduce the computational complexity of BayesNNs. At the hardware level, we propose a novel hardware architecture with the aim of exploiting the structured sparsity for BayesNNs. Both algorithmic and hardware optimisations are jointly applied to push the performance limit.Open Acces

    Hardware Acceleration of Deep Convolutional Neural Networks on FPGA

    Get PDF
    abstract: The rapid improvement in computation capability has made deep convolutional neural networks (CNNs) a great success in recent years on many computer vision tasks with significantly improved accuracy. During the inference phase, many applications demand low latency processing of one image with strict power consumption requirement, which reduces the efficiency of GPU and other general-purpose platform, bringing opportunities for specific acceleration hardware, e.g. FPGA, by customizing the digital circuit specific for the deep learning algorithm inference. However, deploying CNNs on portable and embedded systems is still challenging due to large data volume, intensive computation, varying algorithm structures, and frequent memory accesses. This dissertation proposes a complete design methodology and framework to accelerate the inference process of various CNN algorithms on FPGA hardware with high performance, efficiency and flexibility. As convolution contributes most operations in CNNs, the convolution acceleration scheme significantly affects the efficiency and performance of a hardware CNN accelerator. Convolution involves multiply and accumulate (MAC) operations with four levels of loops. Without fully studying the convolution loop optimization before the hardware design phase, the resulting accelerator can hardly exploit the data reuse and manage data movement efficiently. This work overcomes these barriers by quantitatively analyzing and optimizing the design objectives (e.g. memory access) of the CNN accelerator based on multiple design variables. An efficient dataflow and hardware architecture of CNN acceleration are proposed to minimize the data communication while maximizing the resource utilization to achieve high performance. Although great performance and efficiency can be achieved by customizing the FPGA hardware for each CNN model, significant efforts and expertise are required leading to long development time, which makes it difficult to catch up with the rapid development of CNN algorithms. In this work, we present an RTL-level CNN compiler that automatically generates customized FPGA hardware for the inference tasks of various CNNs, in order to enable high-level fast prototyping of CNNs from software to FPGA and still keep the benefits of low-level hardware optimization. First, a general-purpose library of RTL modules is developed to model different operations at each layer. The integration and dataflow of physical modules are predefined in the top-level system template and reconfigured during compilation for a given CNN algorithm. The runtime control of layer-by-layer sequential computation is managed by the proposed execution schedule so that even highly irregular and complex network topology, e.g. GoogLeNet and ResNet, can be compiled. The proposed methodology is demonstrated with various CNN algorithms, e.g. NiN, VGG, GoogLeNet and ResNet, on two different standalone FPGAs achieving state-of-the art performance. Based on the optimized acceleration strategy, there are still a lot of design options, e.g. the degree and dimension of computation parallelism, the size of on-chip buffers, and the external memory bandwidth, which impact the utilization of computation resources and data communication efficiency, and finally affect the performance and energy consumption of the accelerator. The large design space of the accelerator makes it impractical to explore the optimal design choice during the real implementation phase. Therefore, a performance model is proposed in this work to quantitatively estimate the accelerator performance and resource utilization. By this means, the performance bottleneck and design bound can be identified and the optimal design option can be explored early in the design phase.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201
    • …
    corecore