2,041 research outputs found

    Verifying multi-threaded software using SMT-based context-bounded model checking

    No full text
    We describe and evaluate three approaches to model check multi-threaded software with shared variables and locks using bounded model checking based on Satisfiability Modulo Theories (SMT) and our modelling of the synchronization primitives of the Pthread library. In the lazy approach, we generate all possible interleavings and call the SMT solver on each of them individually, until we either find a bug, or have systematically explored all interleavings. In the schedule recording approach, we encode all possible interleavings into one single formula and then exploit the high speed of the SMT solvers. In the underapproximation and widening approach, we reduce the state space by abstracting the number of interleavings from the proofs of unsatisfiability generated by the SMT solvers. In all three approaches, we bound the number of context switches allowed among threads in order to reduce the number of interleavings explored. We implemented these approaches in ESBMC, our SMT-based bounded model checker for ANSI-C programs. Our experiments show that ESBMC can analyze larger problems and substantially reduce the verification time compared to state-of-the-art techniques that use iterative context-bounding algorithms or counter-example guided abstraction refinement

    QuickCSG: Arbitrary and Faster Boolean Combinations of N Solids

    Get PDF
    While studied over several decades, the computation of boolean operations on polyhedra is almost always addressed by focusing on the case of two polyhedra. For multiple input polyhedra and an arbitrary boolean operation to be applied, the operation is decomposed over a binary CSG tree, each node being processed separately in quasilinear time. For large trees, this is both error prone due to intermediate geometry and error accumulation, and inefficient because each node yields a specific overhead. We introduce a fundamentally new approach to polyhedral CSG evaluation, addressing the general N-polyhedron case. We propose a new vertex-centric view of the problem, which both simplifies the algorithm computing resulting geometric contributions, and vastly facilitates its spatial decomposition. We then embed the entire problem in a single KD-tree, specifically geared toward the final result by early pruning of any region of space not contributing to the final surface. This not only improves the robustness of the approach, it also gives it a fundamental speed advantage, with an output complexity depending on the output mesh size instead of the input size as with usual approaches. Complemented with a task-stealing parallelization, the algorithm achieves breakthrough performance, one to two orders of magnitude speedups with respect to state-of-the-art CPU algorithms, on boolean operations over two to several dozen polyhedra. The algorithm is also shown to outperform recent GPU implementations and approximate discretizations, while producing an exact output without redundant facets.Quoique étudié depuis des décennies, le calcul d'opérations booléennes sur des polyèdres est quasiment toujours fait sur deux opérandes. Pour un plus grand nombre de polyèdres et une opération booléenne arbitraire à effectuer, l'opération est décomposée sur un arbre binaire CSG (géométrie constructive), dans lequel chaque nœud est traité séparément en temps quasi-linéaire. Pour de grands arbres, ceci est à la fois source d'erreurs, à cause des calculs géométriques intermédiaires, et inefficace à cause des traitements superflus au niveau des nœuds. Nous introduisons une approche fondamentalement nouvelle qui traite le cas général de N polyèdres. Nous proposons une vue du problème centrée sur les sommets, ce qui simplifie l'algorithme et facilite sa décomposition spatiale. Nous traitons le problème dans un seul KD-tree, qui est dirigé vers le résultat final, en élaguant les régions de l'espace qui ne contribuent pas à la surface finale. Non seulement ceci améliore la robustesse de l'approche mais ça lui donne un avantage en vitesse, car la complexité dépend plus de la taille de la sortie que celle d'entrée. En la combinant avec une parallélisation basée sur du vol de tâche, l'algorithme a des performances inouïes, d'un ou deux ordres de grandeur plus rapide que les algorithmes de l'état de l'art sur CPU et GPU. De plus il produit un résultat exact, sans aucune primitive géométrique superflue

    QuickCSG: Arbitrary and Faster Boolean Combinations of N Solids

    No full text
    While studied over several decades, the computation of boolean operations on polyhedra is almost always addressed by focusing on the case of two polyhedra. For multiple input polyhedra and an arbitrary boolean operation to be applied, the operation is decomposed over a binary CSG tree, each node being processed separately in quasilinear time. For large trees, this is both error prone due to intermediate geometry and error accumulation, and inefficient because each node yields a specific overhead. We introduce a fundamentally new approach to polyhedral CSG evaluation, addressing the general N-polyhedron case. We propose a new vertex-centric view of the problem, which both simplifies the algorithm computing resulting geometric contributions, and vastly facilitates its spatial decomposition. We then embed the entire problem in a single KD-tree, specifically geared toward the final result by early pruning of any region of space not contributing to the final surface. This not only improves the robustness of the approach, it also gives it a fundamental speed advantage, with an output complexity depending on the output mesh size instead of the input size as with usual approaches. Complemented with a task-stealing parallelization, the algorithm achieves breakthrough performance, one to two orders of magnitude speedups with respect to state-of-the-art CPU algorithms, on boolean operations over two to several dozen polyhedra. The algorithm is also shown to outperform recent GPU implementations and approximate discretizations, while producing an exact output without redundant facets.Quoique étudié depuis des décennies, le calcul d'opérations booléennes sur des polyèdres est quasiment toujours fait sur deux opérandes. Pour un plus grand nombre de polyèdres et une opération booléenne arbitraire à effectuer, l'opération est décomposée sur un arbre binaire CSG (géométrie constructive), dans lequel chaque nœud est traité séparément en temps quasi-linéaire. Pour de grands arbres, ceci est à la fois source d'erreurs, à cause des calculs géométriques intermédiaires, et inefficace à cause des traitements superflus au niveau des nœuds. Nous introduisons une approche fondamentalement nouvelle qui traite le cas général de N polyèdres. Nous proposons une vue du problème centrée sur les sommets, ce qui simplifie l'algorithme et facilite sa décomposition spatiale. Nous traitons le problème dans un seul KD-tree, qui est dirigé vers le résultat final, en élaguant les régions de l'espace qui ne contribuent pas à la surface finale. Non seulement ceci améliore la robustesse de l'approche mais ça lui donne un avantage en vitesse, car la complexité dépend plus de la taille de la sortie que celle d'entrée. En la combinant avec une parallélisation basée sur du vol de tâche, l'algorithme a des performances inouïes, d'un ou deux ordres de grandeur plus rapide que les algorithmes de l'état de l'art sur CPU et GPU. De plus il produit un résultat exact, sans aucune primitive géométrique superflue

    A Methodology to Design Pipelined Simulated Annealing Kernel Accelerators on Space-Borne Field-Programmable Gate Arrays

    Get PDF
    Increased levels of science objectives expected from spacecraft systems necessitate the ability to carry out fast on-board autonomous mission planning and scheduling. Heterogeneous radiation-hardened Field Programmable Gate Arrays (FPGAs) with embedded multiplier and memory modules are well suited to support the acceleration of scheduling algorithms. A methodology to design circuits specifically to accelerate Simulated Annealing Kernels (SAKs) in event scheduling algorithms is shown. The main contribution of this thesis is the low complexity scoring calculation used for the heuristic mapping algorithm used to balance resource allocation across a coarse-grained pipelined data-path. The methodology was exercised over various kernels with different cost functions and problem sizes. These test cases were benchedmarked for execution time, resource usage, power, and energy on a Xilinx Virtex 4 LX QR 200 FPGA and a BAE RAD 750 microprocessor

    Multi-objective improvement of software using co-evolution and smart seeding

    Get PDF
    Optimising non-functional properties of software is an important part of the implementation process. One such property is execution time, and compilers target a reduction in execution time using a variety of optimisation techniques. Compiler optimisation is not always able to produce semantically equivalent alternatives that improve execution times, even if such alternatives are known to exist. Often, this is due to the local nature of such optimisations. In this paper we present a novel framework for optimising existing software using a hybrid of evolutionary optimisation techniques. Given as input the implementation of a program or function, we use Genetic Programming to evolve a new semantically equivalent version, optimised to reduce execution time subject to a given probability distribution of inputs. We employ a co-evolved population of test cases to encourage the preservation of the program’s semantics, and exploit the original program through seeding of the population in order to focus the search. We carry out experiments to identify the important factors in maximising efficiency gains. Although in this work we have optimised execution time, other non-functional criteria could be optimised in a similar manner
    corecore