84 research outputs found

    Memristive System Based Image Processing Technology: A Review and Perspective

    Get PDF
    Copyright: © 2021 by the authors. As the acquisition, transmission, storage and conversion of images become more efficient, image data are increasing explosively. At the same time, the limitations of conventional computational processing systems based on the Von Neumann architecture continue to emerge, and thus, improving the efficiency of image processing has become a key issue that has bothered scholars working on images for a long time. Memristors with non-volatile, synapse-like, as well as integrated storage-and-computation properties can be used to build intelligent processing systems that are closer to the structure and function of biological brains. They are also of great significance when constructing new intelligent image processing systems with non-Von Neumann architecture and for achieving the integrated storage and computation of image data. Based on this, this paper analyses the mathematical models of memristors and discusses their applications in conventional image processing based on memristive systems as well as image processing based on memristive neural networks, to investigate the potential of memristive systems in image processing. In addition, recent advances and implications of memristive system-based image processing are presented comprehensively, and its development opportunities and challenges in different major areas are explored as well. By establishing a complete spectrum of image processing technologies based on memristive systems, this review attempts to provide a reference for future studies in the field, and it is hoped that scholars can promote its development through interdisciplinary academic exchanges and cooperationNational Natural Science Foundation of China (Grant U1909201, Grant 62001149); Natural Science Foundation of Zhejiang Province (Grant LQ21F010009)

    Machine Learning for Cyberattack Detection

    Get PDF
    Machine learning has become rapidly utilized in cybersecurity, rising from almost non-existent to currently over half of cybersecurity techniques utilized commercially. Machine learning is advancing at a rapid rate, and the application of new learning techniques to cybersecurity have not been investigate yet. Current technology trends have led to an abundance of household items containing microprocessors all connected within a private network. Thus, network intrusion detection is essential for keeping these networks secure. However, network intrusion detection can be extremely taxing on battery operated devices. The presented work presents a cyberattack detection system based on a multilayer perceptron neural network algorithm. To show that this system can operate at low power, the algorithm was executed on two commercially available minicomputer systems including the Raspberry PI 3 and the Asus Tinkerboard. An analysis of accuracy, power, energy, and timing was performed to study the tradeoffs necessary when executing these algorithms at low power. Our results show that these low power implementations are feasible, and a scan rate of more than 226,000 packets per second can be achieved from a system that requires approximately 5W to operate with greater than 99% accuracy

    Doctor of Philosophy

    Get PDF
    dissertationDeep Neural Networks (DNNs) are the state-of-art solution in a growing number of tasks including computer vision, speech recognition, and genomics. However, DNNs are computationally expensive as they are carefully trained to extract and abstract features from raw data using multiple layers of neurons with millions of parameters. In this dissertation, we primarily focus on inference, e.g., using a DNN to classify an input image. This is an operation that will be repeatedly performed on billions of devices in the datacenter, in self-driving cars, in drones, etc. We observe that DNNs spend a vast majority of their runtime to runtime performing matrix-by-vector multiplications (MVM). MVMs have two major bottlenecks: fetching the matrix and performing sum-of-product operations. To address these bottlenecks, we use in-situ computing, where the matrix is stored in programmable resistor arrays, called crossbars, and sum-of-product operations are performed using analog computing. In this dissertation, we propose two hardware units, ISAAC and Newton.In ISAAC, we show that in-situ computing designs can outperform DNN digital accelerators, if they leverage pipelining, smart encodings, and can distribute a computation in time and space, within crossbars, and across crossbars. In the ISAAC design, roughly half the chip area/power can be attributed to the analog-to-digital conversion (ADC), i.e., it remains the key design challenge in mixed-signal accelerators for deep networks. In spite of the ADC bottleneck, ISAAC is able to out-perform the computational efficiency of the state-of-the-art design (DaDianNao) by 8x. In Newton, we take advantage of a number of techniques to address ADC inefficiency. These techniques exploit matrix transformations, heterogeneity, and smart mapping of computation to the analog substrate. We show that Newton can increase the efficiency of in-situ computing by an additional 2x. Finally, we show that in-situ computing, unfortunately, cannot be easily adapted to handle training of deep networks, i.e., it is only suitable for inference of already-trained networks. By improving the efficiency of DNN inference with ISAAC and Newton, we move closer to low-cost deep learning that in turn will have societal impact through self-driving cars, assistive systems for the disabled, and precision medicine

    Mixed-precision deep learning based on computational memory

    Full text link
    Deep neural networks (DNNs) have revolutionized the field of artificial intelligence and have achieved unprecedented success in cognitive tasks such as image and speech recognition. Training of large DNNs, however, is computationally intensive and this has motivated the search for novel computing architectures targeting this application. A computational memory unit with nanoscale resistive memory devices organized in crossbar arrays could store the synaptic weights in their conductance states and perform the expensive weighted summations in place in a non-von Neumann manner. However, updating the conductance states in a reliable manner during the weight update process is a fundamental challenge that limits the training accuracy of such an implementation. Here, we propose a mixed-precision architecture that combines a computational memory unit performing the weighted summations and imprecise conductance updates with a digital processing unit that accumulates the weight updates in high precision. A combined hardware/software training experiment of a multilayer perceptron based on the proposed architecture using a phase-change memory (PCM) array achieves 97.73% test accuracy on the task of classifying handwritten digits (based on the MNIST dataset), within 0.6% of the software baseline. The architecture is further evaluated using accurate behavioral models of PCM on a wide class of networks, namely convolutional neural networks, long-short-term-memory networks, and generative-adversarial networks. Accuracies comparable to those of floating-point implementations are achieved without being constrained by the non-idealities associated with the PCM devices. A system-level study demonstrates 173x improvement in energy efficiency of the architecture when used for training a multilayer perceptron compared with a dedicated fully digital 32-bit implementation

    Analog Spiking Neuromorphic Circuits and Systems for Brain- and Nanotechnology-Inspired Cognitive Computing

    Get PDF
    Human society is now facing grand challenges to satisfy the growing demand for computing power, at the same time, sustain energy consumption. By the end of CMOS technology scaling, innovations are required to tackle the challenges in a radically different way. Inspired by the emerging understanding of the computing occurring in a brain and nanotechnology-enabled biological plausible synaptic plasticity, neuromorphic computing architectures are being investigated. Such a neuromorphic chip that combines CMOS analog spiking neurons and nanoscale resistive random-access memory (RRAM) using as electronics synapses can provide massive neural network parallelism, high density and online learning capability, and hence, paves the path towards a promising solution to future energy-efficient real-time computing systems. However, existing silicon neuron approaches are designed to faithfully reproduce biological neuron dynamics, and hence they are incompatible with the RRAM synapses, or require extensive peripheral circuitry to modulate a synapse, and are thus deficient in learning capability. As a result, they eliminate most of the density advantages gained by the adoption of nanoscale devices, and fail to realize a functional computing system. This dissertation describes novel hardware architectures and neuron circuit designs that synergistically assemble the fundamental and significant elements for brain-inspired computing. Versatile CMOS spiking neurons that combine integrate-and-fire, passive dense RRAM synapses drive capability, dynamic biasing for adaptive power consumption, in situ spike-timing dependent plasticity (STDP) and competitive learning in compact integrated circuit modules are presented. Real-world pattern learning and recognition tasks using the proposed architecture were demonstrated with circuit-level simulations. A test chip was implemented and fabricated to verify the proposed CMOS neuron and hardware architecture, and the subsequent chip measurement results successfully proved the idea. The work described in this dissertation realizes a key building block for large-scale integration of spiking neural network hardware, and then, serves as a step-stone for the building of next-generation energy-efficient brain-inspired cognitive computing systems

    Hybrid Memristor-CMOS Computer for Artificial Intelligence: from Devices to Systems

    Full text link
    Neuromorphic computing systems, which aim to mimic the function and structure of the human brain, is a promising approach to overcome the limitations of conventional computing systems such as the von-Neumann bottleneck. Recently, memristors and memristor crossbars have been extensively studied for neuromorphic system implementations due to the ability of memristor devices to emulate biological synapses, thus providing benefits such as co-located memory/logic operations and massive parallelism. A memristor is a two-terminal device whose resistance is modulated by the history of external stimulation. The principle of the resistance modulation, or resistance switching, for a typical oxide-based memristor, is based on oxygen vacancy migration in the oxide layer through ion drift and diffusion. When applied in computing systems, the memristor is often formed in a crossbar structure and used to perform vector-matrix multiplication operations. Since the values in the matrix can be stored as the device conductance values of the crossbar array, when an input vector is applied as voltage pulses with different pulse amplitudes or different pulse widths to the rows of the crossbar, the currents or charges collected at the columns of the crossbar correspond to the resulting VMM outputs, following Ohm’s law and Kirchhoff’s current law. This approach makes it possible to use physics to execute direct computing of this data-intensive task, both in-memory and in parallel in a single step. First of all, I will present a comprehensive physical model of the TaOx-based memristor device where the internal parameters including electric field, temperature, and VO concentration are self-consistently solved to accurately describe the device operation. Starting from the initial Forming process, the model quantitatively captures the dynamic RS behavior, and can reliably reproduce Set/Reset cycling in a self-consistent manner. Beyond clarifying the nature of the Forming and Set/Reset processes, a bulk-like doping effect was revealed by the model during Set and supported by experimental results. This phenomenon can lead to linear analog conductance modulation with a large dynamic range, which is very beneficial for low-power neuromorphic computing applications. Second, an integrated memristor/CMOS system consisting of a 54×108 passive memristor crossbar array directly fabricated on a CMOS chip is presented. The system includes all necessary analog/digital circuitry (including analog-digital converters and digital-analog converters), digital buses, and a programmable processor to control the digital and analog components to form a complete hardware system for neuromorphic computing applications. With the fully-integrated and reprogrammable chip, we experimentally demonstrated three popular models – a perceptron network, a sparse coding network, and a bilayer principal component analysis system with an unsupervised feature extraction layer and a supervised classification layer – all on the same chip. Beyond VMM operations, the internal dynamics of memristors allow the system to natively process temporal features in the input data. Specifically, a WOx-based memristor with short-term memory effect caused by spontaneous oxygen vacancy diffusion was utilized to implement a reservoir computing system to process temporal information. The spatial information of a digit image can be converted into streaming inputs fed into the memristor reservoir, leading to 100% accuracy for simple 4×5 digit recognition and 88.1% accuracy for the MNIST data set. The system was also employed for solving other nonlinear tasks such as emulating a second-order nonlinear system.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/155040/1/seulee_1.pd

    Design of Neuromemristive Systems for Visual Information Processing

    Get PDF
    Neuromemristive systems (NMSs) are brain-inspired, adaptive computer architectures based on emerging resistive memory technology (memristors). NMSs adopt a mixed-signal design approach with closely-coupled memory and processing, resulting in high area and energy efficiencies. Previous work suggests that NMSs could even supplant conventional architectures in niche application domains such as visual information processing. However, given the infancy of the field, there are still several obstacles impeding the transition of these systems from theory to practice. This dissertation advances the state of NMS research by addressing open design problems spanning circuit, architecture, and system levels. Novel synapse, neuron, and plasticity circuits are designed to reduce NMSs’ area and power consumption by using current-mode design techniques and exploiting device variability. Circuits are designed in a 45 nm CMOS process with memristor models based on multilevel (W/Ag-chalcogenide/W) and bistable (Ag/GeS2/W) device data. Higher-level behavioral, power, area, and variability models are ported into MATLAB to accelerate the overall simulation time. The circuits designed in this work are integrated into neural network architectures for visual information processing tasks, including feature detection, clustering, and classification. Networks in the NMSs are trained with novel stochastic learning algorithms that achieve 3.5 reduction in circuit area, reduced design complexity, and exhibit similar convergence properties compared to the least-mean-squares algorithm. This work also examines the effects of device-level variations on NMS performance, which has received limited attention in previous work. The impact of device variations is reduced with a partial on-chip training methodology that enables NMSs to be configured with relatively sophisticated algorithms (e.g. resilient backpropagation), while maximizing their area-accuracy tradeoff
    • …
    corecore