497,220 research outputs found

    Design science methodology for information systems and software engineering

    Get PDF
    Textbook on design science methodology. http://link.springer.com/book/10.1007/978-3-662-43839-

    Information Systems Analysis And Design Course For Computer Engineering

    Get PDF
    Comunicació presentada a EDULEARN2019, 11th International Conference on Education and New Learning Technologies (July 1-3, 2019, Palma, Mallorca, Spain).Computer engineering is a branch of engineering that integrates several fields of computer science and electronics engineering required to develop computer hardware and software. The Universitat Jaume I (UJI) of Castellón, Spain, is teaching the Bachelor’s Degree of Computer Engineering. The degree’s aim is to train students with the abilities to design, implement and maintain computer systems for any sector of economic activity. These studies were in the past a five years pre-Bologna curriculum and now they are developed under the Bologna approach. Four professional profiles are established for graduates in this degree: Specialization track in information technologies, Specialization Track in Computer Engineering, Specialization Track in Information Systems and Specialization Track in Software Engineering. The degree is composed by different courses. One of these courses is the information systems analysis and design course. It addresses the necessary basic knowledge and competencies to produce graduate with the advanced knowledge, skills, expertise and competencies required to apply a systematic methodology for the analysis and design of information systems, together with the appropriate methods, techniques and tools. The aim of this paper is to show the methodology and learning solutions used to train the students to undertake information systems analysis and design in any kind of organizations. Paper shows the course objectives, the target competencies, the course contents, the assessments, and how the technology resources for e-learning are used to teach the subject

    Sustainability in Software Engineering: A Design Science Research Approach

    Get PDF
    In the current global context, with so many challenges to be faced, it is important to see people’s increased interest in sustainability issues as an opportunity for change. Sustainable Software Engineering, as a recent research area, incorporates sustainability principles and dimensions in the software development process. On the other hand, the Design Science Research methodology has become a well-received research paradigm in Information Systems in general and in Software Engineering in particular. The paper presents a Sustainable Software Engineering approach integrated into the Design Science Research methodology. The concepts of sustainability in software development, namely the principles of the Karlskrona Manifesto, the principles of Green Software Engineering and the Sustainable Development Goals are integrated into the approach. Preliminary results from applying the approach indicate that the iterative process of the Design Science Research methodology allows for the integration of multidisciplinary sustainability artefacts during the software process

    OpenUP/MDRE: A Model-Driven Requirements Engineering Approach for Health-Care Systems

    Full text link
    The domains and problems for which it would be desirable to introduce information systems are currently very complex and the software development process is thus of the same complexity. One of these domains is health-care. Model-Driven Development (MDD) and Service-Oriented Architecture (SOA) are software development approaches that raise to deal with complexity, to reduce time and cost of development, augmenting flexibility and interoperability. However, many techniques and approaches that have been introduced are of little use when not provided under a formalized and well-documented methodological umbrella. A methodology gives the process a well-defined structure that helps in fast and efficient analysis and design, trouble-free implementation, and finally results in the software product improved quality. While MDD and SOA are gaining their momentum toward the adoption in the software industry, there is one critical issue yet to be addressed before its power is fully realized. It is beyond dispute that requirements engineering (RE) has become a critical task within the software development process. Errors made during this process may have negative effects on subsequent development steps, and on the quality of the resulting software. For this reason, the MDD and SOA development approaches should not only be taken into consideration during design and implementation as usually occurs, but also during the RE process. The contribution of this dissertation aims at improving the development process of health-care applications by proposing OpenUP/MDRE methodology. The main goal of this methodology is to enrich the development process of SOA-based health-care systems by focusing on the requirements engineering processes in the model-driven context. I believe that the integration of those two highly important areas of software engineering, gathered in one consistent process, will provide practitioners with many benets. It is noteworthy that the approach presented here was designed for SOA-based health-care applications, however, it also provides means to adapt it to other architectural paradigms or domains. The OpenUP/MDRE approach is an extension of the lightweight OpenUP methodology for iterative, architecture-oriented and model-driven software development. The motivation for this research comes from the experience I gained as a computer science professional working on the health-care systems. This thesis also presents a comprehensive study about: i) the requirements engineering methods and techniques that are being used in the context of the model-driven development, ii) known generic but flexible and extensible methodologies, as well as approaches for service-oriented systems development, iii) requirements engineering techniques used in the health-care industry. Finally, OpenUP/MDRE was applied to a concrete industrial health-care project in order to show the feasibility and accuracy of this methodological approach.Loniewski, G. (2010). OpenUP/MDRE: A Model-Driven Requirements Engineering Approach for Health-Care Systems. http://hdl.handle.net/10251/11652Archivo delegad

    Designing normative open virtual enterprises

    Full text link
    This is an Accepted Manuscript of an article published by Taylor & Francis Group in Enterprise Information Systems on 23/03/2016, available online: http://www.tandfonline.com/10.1080/17517575.2015.1036927.[EN] There is an increasing interest on developing virtual enterprises in order to deal with the globalisation of the economy, the rapid growth of information technologies and the increase of competitiveness. In this paper we deal with the development of normative open virtual enterprises (NOVEs). They are systems with a global objective that are composed of a set of heterogeneous entities and enterprises that exchange services following a specific normative context. In order to analyse and design systems of this kind the multi-agent paradigm seems suitable because it offers a specific solution for supporting the social and contractual relationships between enterprises and for formalising their business processes. This paper presents how the Regulated Open Multiagent systems (ROMAS) methodology, an agent-oriented software methodology, can be used to analyse and design NOVEs. ROMAS offers a complete development process that allows identifying and formalising of the structure of NOVEs, their normative context and the interactions among their members. The use of ROMAS is exemplified by means of a case study that represents an automotive supply chain.This work was partially supported by the projects [PROMETEOII/2013/019], [TIN2012-36586-C03-01], [FP7-29493], [TIN2011-27652-C03-00] and [CSD2007-00022], and the CASES project within the 7th European Community Framework Programme [grant agreement number 294931].Garcia Marques, ME.; Giret Boggino, AS.; Botti Navarro, VJ. (2016). Designing normative open virtual enterprises. Enterprise Information Systems. 10(3):303-324. https://doi.org/10.1080/17517575.2015.1036927S303324103Cardoso, H. L., Urbano, J., Brandão, P., Rocha, A. P., & Oliveira, E. (2012). ANTE: Agreement Negotiation in Normative and Trust-Enabled Environments. Advances on Practical Applications of Agents and Multi-Agent Systems, 261-264. doi:10.1007/978-3-642-28786-2_33Chu, X. N., Tso, S. K., Zhang, W. J., & Li, Q. (2002). Partnership Synthesis for Virtual Enterprises. The International Journal of Advanced Manufacturing Technology, 19(5), 384-391. doi:10.1007/s001700200028Davidsson, P., & Jacobsson, A. (s. f.). Towards Norm-Governed Behavior in Virtual Enterprises. Studies in Computational Intelligence, 35-55. doi:10.1007/978-3-540-88071-4_3DeLoach, S. A., & Ojeda, J. C. G. (2010). O-MaSE: a customisable approach to designing and building complex, adaptive multi-agent systems. International Journal of Agent-Oriented Software Engineering, 4(3), 244. doi:10.1504/ijaose.2010.036984DI MARZO SERUGENDO, G., GLEIZES, M.-P., & KARAGEORGOS, A. (2005). Self-organization in multi-agent systems. The Knowledge Engineering Review, 20(2), 165-189. doi:10.1017/s0269888905000494Dignum, V. 2003. “A Model for Organizational Interaction: Based on Agents, Founded in Logic.” PhD diss., Utrecht University.Dignum, V., and F. Dignum. 2006.A Landscape of Agent Systems for the Real World. Technical Report 44-CS-2006-061. Utrecht: Institute of Information and Computing Sciences, Utrecht University.Dignum, V., Meyer, J.-J. C., Dignum, F., & Weigand, H. (2003). Formal Specification of Interaction in Agent Societies. Lecture Notes in Computer Science, 37-52. doi:10.1007/978-3-540-45133-4_4Garcia, E. 2013. “Engineering Regulated Open Multiagent Systems.” PhD diss., Universitat Politecnica de Valencia.Garcia, E., Giret, A., & Botti, V. (s. f.). Software Engineering for Service-Oriented MAS. Lecture Notes in Computer Science, 86-100. doi:10.1007/978-3-540-85834-8_9Garcia, E., Giret, A., & Botti, V. (2013). A Model-Driven CASE tool for developing and verifying regulated open MAS. Science of Computer Programming, 78(6), 695-704. doi:10.1016/j.scico.2011.10.009Garcia, E., Giret, A., & Botti, V. (2011). Evaluating software engineering techniques for developing complex systems with multiagent approaches. Information and Software Technology, 53(5), 494-506. doi:10.1016/j.infsof.2010.12.012Garcia, E., Giret, A., & Botti, V. (2011). Regulated Open Multi-Agent Systems Based on Contracts. Information Systems Development, 243-255. doi:10.1007/978-1-4419-9790-6_20Garcia, E., Giret, A., & Botti, V. (2014). ROMAS Methodology. Handbook on Agent-Oriented Design Processes, 331-369. doi:10.1007/978-3-642-39975-6_11Hollander, C. D., & Wu, A. S. (2011). The Current State of Normative Agent-Based Systems. Journal of Artificial Societies and Social Simulation, 14(2). doi:10.18564/jasss.1750HORLING, B., & LESSER, V. (2004). A survey of multi-agent organizational paradigms. The Knowledge Engineering Review, 19(4), 281-316. doi:10.1017/s0269888905000317Julian, V., Rebollo, M., Argente, E., Botti, V., Carrascosa, C., & Giret, A. (2009). Using THOMAS for Service Oriented Open MAS. Lecture Notes in Computer Science, 56-70. doi:10.1007/978-3-642-10739-9_5Luck, M., Barakat, L., Keppens, J., Mahmoud, S., Miles, S., Oren, N., … Taweel, A. (2011). Flexible Behaviour Regulation in Agent Based Systems. Lecture Notes in Computer Science, 99-113. doi:10.1007/978-3-642-22427-0_8Meneguzzi, F., Modgil, S., Oren, N., Miles, S., Luck, M., & Faci, N. (2012). Applying electronic contracting to the aerospace aftercare domain. Engineering Applications of Artificial Intelligence, 25(7), 1471-1487. doi:10.1016/j.engappai.2012.06.004Presley, A., Sarkis, J., Barnett, W., & Liles, D. (2001). International Journal of Flexible Manufacturing Systems, 13(2), 145-162. doi:10.1023/a:1011131417956Saeki, M., & Kaiya, H. (2008). Supporting the Elicitation of Requirements Compliant with Regulations. Active Flow and Combustion Control 2018, 228-242. doi:10.1007/978-3-540-69534-9_18Such, J. M., García-Fornes, A., Espinosa, A., & Bellver, J. (2013). Magentix2: A privacy-enhancing Agent Platform. Engineering Applications of Artificial Intelligence, 26(1), 96-109. doi:10.1016/j.engappai.2012.06.009Telang, P. R., & Singh, M. P. (2009). Enhancing Tropos with Commitments. Lecture Notes in Computer Science, 417-435. doi:10.1007/978-3-642-02463-4_22Wooldridgey, M., & Ciancarini, P. (2001). Agent-Oriented Software Engineering: The State of the Art. Lecture Notes in Computer Science, 1-28. doi:10.1007/3-540-44564-1_

    Application and Development of Advanced Engineering Geographical Information Systems for Pipeline Design

    Get PDF
    This thesis proposes the use of an Advanced Engineering Geographical Information System (AEGIS) for the improved design of onshore pipelines, from concept to operation. The system is novel in that it is function rather than discipline or software specific. The thesis statement has been developed, and an aim and set of research objectives identified (along with the success criteria for the evaluation of the system), based on a review of current pipeline design methods. Drawing on a design science research methodology (DSRM), the thesis proposes the development of the system as an artefact in order to validate the proposed constructs, models, methods and implementations. The thesis discusses the underlying issues of data interoperability, the application of open data standards, and the integration of computer aided design (CAD) and geographical information systems (GIS). These challenges are addressed in the thesis and demonstrated through the implementation of the system. To support the development of the system, research was undertaken in the fields of pipeline engineering, environmental engineering and engineering design. As part of this research, a number of peer-reviewed journal papers were published, and conference papers presented in Kampala, Houston, London and Split. These papers covered the key fields contained in the thesis including, fluid mechanics, bio-systems engineering, environmental engineering,CAD/GIS integration (CGI), and the application and development of geospatial pipeline data models. The thesis concludes that the approach is valid, offering significant improvement across all fields compared to the current method of pipeline design. By taking a functional approach to the challenges of the design of pipelines, a system has been developed that addresses the requirements of the pipeline engineer, environmental engineer and engineering designer. The system enables the user to select the software of their choice, thereby reducing the problems associated with data interoperability, retraining and system integration. The sharing of data and outputs from analysis carried out within the system, provides an integrated approach, which can subsequently be used for the integrity management of the pipeline during the operational phase of the project. The scope for further development of this approach to pipeline design is also discussed. In addition to the inclusion of further engineering and environmental analysis, there is the potential for using the system for the design of subsea pipelines

    A systematic review of quality attributes and measures for software product lines

    Full text link
    [EN] It is widely accepted that software measures provide an appropriate mechanism for understanding, monitoring, controlling, and predicting the quality of software development projects. In software product lines (SPL), quality is even more important than in a single software product since, owing to systematic reuse, a fault or an inadequate design decision could be propagated to several products in the family. Over the last few years, a great number of quality attributes and measures for assessing the quality of SPL have been reported in literature. However, no studies summarizing the current knowledge about them exist. This paper presents a systematic literature review with the objective of identifying and interpreting all the available studies from 1996 to 2010 that present quality attributes and/or measures for SPL. These attributes and measures have been classified using a set of criteria that includes the life cycle phase in which the measures are applied; the corresponding quality characteristics; their support for specific SPL characteristics (e. g., variability, compositionality); the procedure used to validate the measures, etc. We found 165 measures related to 97 different quality attributes. The results of the review indicated that 92% of the measures evaluate attributes that are related to maintainability. In addition, 67% of the measures are used during the design phase of Domain Engineering, and 56% are applied to evaluate the product line architecture. However, only 25% of them have been empirically validated. In conclusion, the results provide a global vision of the state of the research within this area in order to help researchers in detecting weaknesses, directing research efforts, and identifying new research lines. In particular, there is a need for new measures with which to evaluate both the quality of the artifacts produced during the entire SPL life cycle and other quality characteristics. There is also a need for more validation (both theoretical and empirical) of existing measures. In addition, our results may be useful as a reference guide for practitioners to assist them in the selection or the adaptation of existing measures for evaluating their software product lines. © 2011 Springer Science+Business Media, LLC.This research has been funded by the Spanish Ministry of Science and Innovation under the MULTIPLE (Multimodeling Approach For Quality-Aware Software Product Lines) project with ref. TIN2009-13838.Montagud Gregori, S.; Abrahao Gonzales, SM.; Insfrán Pelozo, CE. (2012). A systematic review of quality attributes and measures for software product lines. Software Quality Journal. 20(3-4):425-486. https://doi.org/10.1007/s11219-011-9146-7S425486203-4Abdelmoez, W., Nassar, D. M., Shereschevsky, M., Gradetsky, N., Gunnalan, R., Ammar, H. H., et al. (2004). Error propagation in software architectures. In 10th international symposium on software metrics (METRICS), Chicago, Illinois, USA.Ajila, S. A., & Dumitrescu, R. T. (2007). Experimental use of code delta, code churn, and rate of change to understand software product line evolution. Journal of Systems and Software, 80, 74–91.Aldekoa, G., Trujillo, S., Sagardui, G., & Díaz, O. (2006). Experience measuring maintainability in software product lines. In XV Jornadas de Ingeniería del Software y Bases de Datos (JISBD). Barcelona.Aldekoa, G., Trujillo, S., Sagardui, G., & Díaz, O. (2008). Quantifying maintanibility in feature oriented product lines, Athens, Greece, pp. 243–247.Alves de Oliveira Junior, E., Gimenes, I. M. S., & Maldonado, J. C. (2008). A metric suite to support software product line architecture evaluation. In XXXIV Conferencia Latinamericana de Informática (CLEI), Santa Fé, Argentina, pp. 489–498.Alves, V., Niu, N., Alves, C., & Valença, G. (2010). Requirements engineering for software product lines: A systematic literature review. Information & Software Technology, 52(8), 806–820.Bosch, J. (2000). Design and use of software architectures: Adopting and evolving a product line approach. USA: ACM Press/Addison-Wesley Publishing Co.Briand, L. C., Differing, C. M., & Rombach, D. (1996a). Practical guidelines for measurement-based process improvement. Software Process-Improvement and Practice, 2, 253–280.Briand, L. C., Morasca, S., & Basili, V. R. (1996b). Property based software engineering measurement. IEEE Transactions on Software Eng., 22(1), 68–86.Calero, C., Ruiz, J., & Piattini, M. (2005). Classifying web metrics using the web quality model. Online Information Review, 29(3): 227–248.Chen, L., Ali Babar, M., & Ali, N. (2009). Variability management in software product lines: A systematic review. In 13th international software product lines conferences (SPLC), San Francisco, USA.Clements, P., & Northrop, L. (2002). Software product lines. 2003. Software product lines practices and patterns. Boston, MA: Addison-Wesley.Crnkovic, I., & Larsson, M. (2004). Classification of quality attributes for predictability in component-based systems. Journal of Econometrics, pp. 231–250.Conference Rankings of Computing Research and Education Association of Australasia (CORE). (2010). Available in http://core.edu.au/index.php/categories/conference%20rankings/1 .Davis, A., Dieste, Ó., Hickey, A., Juristo, N., & Moreno, A. M. (2006). Effectiveness of requirements elicitation techniques: Empirical results derived from a systematic review. In 14th IEEE international conference requirements engineering, pp. 179–188.de Souza Filho, E. D., de Oliveira Cavalcanti, R., Neiva, D. F. S., Oliveira, T. H. B., Barachisio Lisboa, L., de Almeida E. S., & de Lemos Meira, S. R. (2008). Evaluating domain design approaches using systematic review. In 2nd European conference on software architecture, Cyprus, pp. 50–65.Ejiogu, L. (1991). Software engineering with formal metrics. QED Publishing.Engström, E., & Runeson, P. (2011). Software product line testing—A systematic mapping study. Information & Software Technology, 53(1), 2–13.Etxeberria, L., Sagarui, G., & Belategi, L. (2008). Quality aware software product line engineering. Journal of the Brazilian Computer Society, 14(1), Campinas Mar.Ganesan, D., Knodel, J., Kolb, R., Haury, U., & Meier, G. (2007). Comparing costs and benefits of different test strategies for a software product line: A study from Testo AG. In 11th international software product line conference, Kyoto, Japan, pp. 74–83, September 2007.Gómez, O., Oktaba, H., Piattini, M., & García, F. (2006). A systematic review measurement in software engineering: State-of-the-art in measures. In First international conference on software and data technologies (ICSOFT), Setúbal, Portugal, pp. 11–14.IEEE standard for a software quality metrics methodology, IEEE Std 1061-1998, 1998.Inoki, M., & Fukazawa, Y. (2007). Software product line evolution method based on Kaizen approach. In 22nd annual ACM symposium on applied computing, Korea.Insfran, E., & Fernandez, A. (2008). A systematic review of usability evaluation in Web development. 2nd international workshop on web usability and accessibility (IWWUA’08), New Zealand, LNCS 5176, Springer, pp. 81–91.ISO/IEC 25010. (2008). Systems and software engineering. Systems and software Quality Requirements and Evaluation (SQuaRE). System and software quality models.ISO/IEC 9126. (2000). Software engineering. Product Quality.Johansson, E., & Höst, R. (2002). Tracking degradation in software product lines through measurement of design rule violations. In 14th International conference on software engineering and knowledge engineering, Ischia, Italy, pp. 249–254.Journal Citation Reports of Thomson Reuters. (2010). Available in http://thomsonreuters.com/products_services/science/science_products/a-z/journal_citation_reports/ .Khurum, M., & Gorschek, T. (2009). A systematic review of domain analysis solutions for product lines. The Journal of Systems and Software.Kim, T., Ko, I. Y., Kang, S. W., & Lee, D. H. (2008). Extending ATAM to assess product line architecture. In 8th IEEE international conference on computer and information technology, pp. 790–797.Kitchenham, B. (2007). Guidelines for performing systematic literature reviews in software engineering. Version 2.3, EBSE Technical Report, Keele University, UK.Kitchenham, B., Pfleeger, S., & Fenton, N. (1995). Towards a framework for software measurement validation. IEEE Transactions on Software Engineering, 21(12).Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33, 159–174.Mendes, E. (2005). A systematic review of Web engineering research. International symposium on empirical software engineering. Noosa Heads, Australia.Meyer, M. H., & Dalal, D. (2002). Managing platform architectures and manufacturing processes for non assembled products. Journal of Product Innovation Management, 19(4), 277–293.Montagud, S., & Abrahão, S. (2009). Gathering Current knowledge about quality evaluation in software product lines. In 13th international software product lines conferences (SPLC), San Francisco, USA.Montagud, S., & Abrahão, S. (2009). A SQuaRE-bassed quality evaluation method for software product lines. Master’s thesis, December 2009 (in Spanish).Needham, D., & Jones, S. (2006). A software fault tree metric. In 22nd international conference on software maintenance (ICSM), Philadelphia, Pennsylvania, USA.Niemelä, E., & Immonen, A. (2007). Capturing quality requirements of product family architecture. Information and Software Technology, 49(11–12), 1107–1120.Odia, O. E. (2007). Testing in software product lines. Master Thesis Software Engineering of School of Engineering, Bleking Institute of Technology. Thesis no. MSE-2007:16, Sweden.Olumofin, F. G., & Mišić, V. B. (2007). A holistic architecture assessment method for software product lines. Information and Software Technology, 49, 309–323.Pérez Lamancha, B., Polo Usaola, M., & Piattini Velthius, M. (2009). Software product line testing—a systematic review. ICSOFT, (1), 23–30.Poels, G., & Dedene, G. (2000). Distance-based software measurement: necessary and sufficient properties for software measures. Information and Software Technology, 42(I), 35–46.Prehofer, C., van Gurp, J., & Bosch, J. (2008). Compositionality in software platforms. In Emerging methods, technologies and process management in software engineering. Wiley.Rahman, A. (2004). Metrics for the structural assessment of product line architecture. Master Thesis on Software Engineering, Thesis no. MSE-2004:24. School of Engineering, Blekinge Institute of Technology, Sweden.Sethi, K., Cai, Y., Wong, S., Garcia, A., & Sant’Anna, C. (2009). From retrospect to prospect: Assessing modularity and stability from software architecture. Joint working IEEE/IFIP conference on software architecture, 2009 & European conference on software architecture. WICSA/ECSA.Shaik, I., Abdelmoez, W,. Gunnalan, R., Shereshevsky, M., Zeid, A., Ammar, H. H., et al. (2005). Change propagation for assessing design quality of software architectures. 5th working IEEE/IFIP conference on software architecture (WICSA’05).Siegmund, N., Rosenmüller, M., Kuhlemann, M., Kästner, C., & Saake, G. (2008). Measuring non-functional properties in software product lines for product derivation. In 15th Asia-Pacific software engineering conference, Beijing, China.Sun Her, J., Hyeok Kim, J., Hun Oh, S., Yul Rhew, S., & Dong Kim, S. (2007). A framework for evaluating reusability of core asset in product line engineering. Information and Software Technology, 49, 740–760.Svahnberg, M., & Bosch, J. (2000). Evolution in software product lines. In 3rd international workshop on software architectures for products families (IWSAPF-3). Las Palmas de Gran Canaria.Van der Hoek, A., Dincel, E., & Medidović, N. (2003). Using services utilization metrics to assess the structure of product line architectures. In 9th international software metrics symposium (METRICS), Sydney, Australia.Van der Linden, F., Schmid, K., & Rommes, E. (2007). Software product lines in action. Springer.Whitmire, S. (1997). Object oriented design measurement. John Wiley & Sons.Wnuk, K., Regnell, B., & Karlsson, L. (2009). What happened to our features? Visualization and understanding of scope change dynamics in a large-scale industrial setting. In 17th IEEE international requirements engineering conference.Yoshimura, K., Ganesan, D., & Muthig, D. (2006). Assessing merge potential of existing engine control systems into a product line. In International workshop on software engineering for automative systems, Shangai, China, pp. 61–67.Zhang, T., Deng, L., Wu, J., Zhou, Q., & Ma, C. (2008). Some metrics for accessing quality of product line architecture. In International conference on computer science and software engineering (CSSE), Wuhan, China, pp. 500–503

    Evaluating how agent methodologies support the specification of the normative environment through the development process

    Full text link
    [EN] Due to the increase in collaborative work and the decentralization of processes in many domains, there is an expanding demand for large-scale, flexible and adaptive software systems to support the interactions of people and institutions distributed in heterogeneous environments. Commonly, these software applications should follow specific regulations meaning the actors using them are bound by rights, duties and restrictions. Since this normative environment determines the final design of the software system, it should be considered as an important issue during the design of the system. Some agent-oriented software engineering methodologies deal with the development of normative systems (systems that have a normative environment) by integrating the analysis of the normative environment of a system in the development process. This paper analyses to what extent these methodologies support the analysis and formalisation of the normative environment and highlights some open issues of the topic.This work is partially supported by the PROMETEOII/2013/019, TIN2012-36586-C03-01, FP7-29493, TIN2011-27652-C03-00, CSD2007-00022 projects, and the CASES project within the 7th European Community Framework Program under the grant agreement No 294931.Garcia Marques, ME.; Miles, S.; Luck, M.; Giret Boggino, AS. (2014). Evaluating how agent methodologies support the specification of the normative environment through the development process. Autonomous Agents and Multi-Agent Systems. 1-20. https://doi.org/10.1007/s10458-014-9275-zS120Cossentino, M., Hilaire, V., Molesini, A., & Seidita, V. (Eds.). (2014). Handbook on agent-oriented design processes (Vol. VIII, 569 p. 508 illus.). Berlin: Springer.Akbari, O. (2010). A survey of agent-oriented software engineering paradigm: Towards its industrial acceptance. Journal of Computer Engineering Research, 1, 14–28.Argente, E., Botti, V., Carrascosa, C., Giret, A., Julian, V., & Rebollo, M. (2011). An abstract architecture for virtual organizations: The THOMAS approach. Knowledge and Information Systems, 29(2), 379–403.Argente, E., Botti, V., & Julian, V. (2009). GORMAS: An organizational-oriented methodological guideline for open MAS. In Proceedings of AOSE’09 (pp. 440–449).Argente, E., Botti, V., & Julian, V. (2009). Organizational-oriented methodological guidelines for designing virtual organizations. In Distributed computing, artificial intelligence, bioinformatics, soft computing, and ambient assisted living. Lecture Notes in Computer Science (Vol. 5518, pp. 154–162).Boella, G., Pigozzi, G., & van der Torre, L. (2009). Normative systems in computer science—Ten guidelines for normative multiagent systems. In G. Boella, P. Noriega, G. Pigozzi, & H. Verhagen (Eds.), Normative multi-agent systems, number 09121 in Dagstuhl seminar proceedings.Boella, G., Torre, L., & Verhagen, H. (2006). Introduction to normative multiagent systems. Computational and Mathematical Organization Theory, 12(2–3), 71–79.Bogdanovych, A., Esteva, M., Simoff, S., Sierra, C., & Berger, H. (2008). A methodology for developing multiagent systems as 3d electronic institutions. In M. Luck & L. Padgham (Eds.), Agent-Oriented Software Engineering VIII (Vol. 4951, pp. 103–117). Lecture Notes in Computer Science. Berlin: Springer.Boissier, O., Padget, J., Dignum, V., Lindemann, G., Matson, E., Ossowski, S., Sichman, J., & Vazquez-Salceda, J. (2006). Coordination, organizations, institutions and norms in multi-agent systems. LNCS (LNAI) (Vol. 3913).Bordini, R. H., Fisher, M., Visser, W., & Wooldridge, M. (2006). Verifying multi-agent programs by model checking. In Autonomous agents and multi-agent systems (Vol. 12, pp. 239–256). Hingham, MA: Kluwer Academic Publishers.Botti, V., Garrido, A., Giret, A., & Noriega, P. (2011). The role of MAS as a decision support tool in a water-rights market. In Post-proceedings workshops AAMAS2011 (Vol. 7068, pp. 35–49). Berlin: Springer.Breaux, T. (2009). Exercising due diligence in legal requirements acquisition: A tool-supported, frame-based approach. In Proceedings of the IEEE international requirements engineering conference (pp. 225–230).Breaux, T. D., & Baumer, D. L. (2011). Legally reasonable security requirements: A 10-year ftc retrospective. Computers and Security, 30(4), 178–193.Breaux, T. D., Vail, M. W., & Anton, A. I. (2006). Towards regulatory compliance: Extracting rights and obligations to align requirements with regulations. In Proceedings of the 14th IEEE international requirements engineering conference, RE ’06 (pp. 46–55). Washington, DC: IEEE Computer Society.Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., & Mylopoulos, J. (2004). Tropos: An agent-oriented software development methodology. Autonomous Agents and Multi-Agent Systems, 8(3), 203–236.Cardoso, H. L., & Oliveira, E. (2008). A contract model for electronic institutions. In COIN’07: Proceedings of the 2007 international conference on Coordination, organizations, institutions, and norms in agent systems III (pp. 27–40).Castor, A., Pinto, R. C., Silva, C. T. L. L., & Castro, J. (2004). Towards requirement traceability in tropos. In WER (pp. 189–200).Chopra, A., Dalpiaz, F., Giorgini, P., & Mylopoulos, J. (2009). Modeling and reasoning about service-oriented applications via goals and commitments. ICST conference on digital business.Cliffe, O., Vos, M., & Padget, J. (2006). Specifying and analysing agent-based social institutions using answer set programming. In O. Boissier, J. Padget, V. Dignum, G. Lindemann, E. Matson, S. Ossowski, J. Sichman, & J. Vázquez-Salceda (Eds.), Coordination, organizations, institutions, and norms in multi-agent systems. Lecture Notes in Computer Science (Vol. 3913, pp. 99–113). Springer. Berlin.Criado, N., Argente, E., Garrido, A., Gimeno, J. A., Igual, F., Botti, V., Noriega, P., & Giret, A. (2011). Norm enforceability in Electronic Institutions? In Coordination, organizations, institutions, and norms in agent systems VI (Vol. 6541, pp. 250–267). Springer.Dellarocas, C., & Klein, M. (2001). Contractual agent societies. In R. Conte & C. Dellarocas (Eds.), Social order in multiagent systems (Vol. 2, pp. 113–133)., Multiagent Systems, Artificial Societies, and Simulated Organizations New York: Springer.DeLoach, S. A. (2008). Developing a multiagent conference management system using the o-mase process framework. In Proceedings of the international conference on agent-oriented software engineering VIII (pp. 168–181).DeLoach, S. A., & Garcia-Ojeda, J. C. (2010). O-mase; a customisable approach to designing and building complex, adaptive multi-agent systems. International Journal of Agent-Oriented Software Engineering, 4(3), 244–280.DeLoach, S. A., Padgham, L., Perini, A., Susi, A., & Thangarajah, J. (2009). Using three aose toolkits to develop a sample design. International Journal Agent-Oriented Software Engineering, 3, 416–476.Dignum, F., Dignum, V., Thangarajah, J., Padgham, L., & Winikoff, M. (2007). Open agent systems? Eighth international workshop on agent oriented software engineering (AOSE) in AAMAS07.Dignum, V. (2003). A model for organizational interaction:based on agents, founded in logic. PhD thesis, Utrecht University.Dignum, V., Meyer, J., Dignum, F., & Weigand, H. (2003). Formal specification of interaction in agent societies. Formal approaches to agent-based systems (Vol. 2699).Dignum, V., Vazquez-Salceda, J., & Dignum, F. (2005). Omni: Introducing social structure, norms and ontologies into agent organizations. In R. Bordini, M. Dastani, J. Dix, & A. Seghrouchni (Eds.)Programming multi-agent systems. Lecture Notes in Computer Science (Vol. 3346, pp. 181–198). Berlin: Springer.d’Inverno, M., Luck, M., Noriega, P., Rodriguez-Aguilar, J., & Sierra, C. (2012). Communicating open systems, 186, 38–94.Elsenbroich, C., & Gilbert, N. (2014). Agent-based modelling. In Modelling norms (pp. 65–84). Dordrecht: Springer.Esteva, M., Rosell, B., Rodriguez, J. A., & Arcos, J. L. (2004). AMELI: An agent-based middleware for electronic institutions. In AAMAS04 (pp. 236–243).Fenech, S., Pace, G. J., & Schneider, G. (2009). Automatic conflict detection on contracts. In Proceedings of the 6th international colloquium on theoretical aspects of computing, ICTAC ’09 (pp. 200–214).Garbay, C., Badeig, F., & Caelen, J. (2012). Normative multi-agent approach to support collaborative work in distributed tangible environments. In Proceedings of the ACM 2012 conference on computer supported cooperative work companion, CSCW ’12 (pp. 83–86). New York, NY: ACM.Garcia, E., Giret, A., & Botti, V. (2011). Regulated open multi-agent systems based on contracts. In Information Systems Development (pp. 243–255).Garcia, E., Tyson, G., Miles, S., Luck, M., Taweel, A., Staa, T. V., & Delaney, B. (2012). An analysis of agent-oriented engineering of e-health systems. In 13th international eorkshop on sgent-oriented software engineering (AOSE-AAMAS).Garcia, E., Tyson, G., Miles, S., Luck, M., Taweel, A., Staa, T. V., and Delaney, B. (2013). Analysing the Suitability of Multiagent Methodologies for e-Health Systems. In Agent-Oriented Software Engineering XIII, volume 7852, pages 134–150. Springer-Verlag.Garrido, A., Giret, A., Botti, V., & Noriega, P. (2013). mWater, a case study for modeling virtual markets. In New perspectives on agreement technologies (Vol. Law, Gover, pp. 563–579). Springer.Gteau, B., Boissier, O., & Khadraoui, D. (2006). Multi-agent-based support for electronic contracting in virtual enterprises. IFAC Symposium on Information Control Problems in Manufacturing (INCOM), 150(3), 73–91.Hollander, C. D., & Wu, A. S. (2011). The current state of normative agent-based systems. Journal of Artificial Societies and Social Simulation, 14(2), 6.Hsieh, F.-S. (2005). Automated negotiation based on contract net and petri net. In E-commerce and web technologies. Lecture Notes in Computer Science (Vol. 3590, pp. 148–157).Kollingbaum, M., Jureta, I. J., Vasconcelos, W., & Sycara, K. (2008). Automated requirements-driven definition of norms for the regulation of behavior in multi-agent systems. In Proceedings of the AISB 2008 workshop on behaviour regulation in multi-agent systems, Aberdeen, Scotland, U.K., April 2008.Li, T., Balke, T., Vos, M., Satoh, K., & Padget, J. (2013). Detecting conflicts in legal systems. In Y. Motomura, A. Butler, & D. Bekki (Eds.), New Frontiers in Artificial Intelligence (Vol. 7856, pp. 174–189)., Lecture Notes in Computer Science Berlin Heidelberg: Springer.Lomuscio, A., Qu, H., & Solanki, M. (2010) Towards verifying contract regulated service composition. Journal of Autonomous Agents and Multi-Agent Systems (pp. 1–29).Lopez, F., Luck, M., & d’Inverno, M. (2006). A normative framework for agent-based systems. Computational and Mathematical Organization Theory, 12, 227–250.Lpez, F. y, Luck, M., & dInverno, M. (2006). A normative framework for agent-based systems. Computational and Mathematical Organization Theory, 12(2–3), 227–250.Mader, P., & Egyed, A. (2012). Assessing the effect of requirements traceability for software maintenance. In 28th IEEE International Conference on Software Maintenance (ICSM) (pp. 171–180), Sept 2012.Mao, X., & Yu, E. (2005). Organizational and social concepts in agent oriented software engineering. In AOSE IV. Lecture Notes in Artificial Intelligence (Vol. 3382, pp. 184–202).Meyer, J.-J. C., & Wieringa, R. J. (Eds.). (1993). Deontic logic in computer science: Normative system specification. Chichester, UK: Wiley.Okouya, D., & Dignum, V. (2008). Operetta: A prototype tool for the design, analysis and development of multi-agent organizations (demo paper). In AAMAS (pp. 1667–1678).Malone, T. W., Smith J. B., & Olson, G. M. (2001). Coordination theory and collaboration technology. Mahwah, NJ: Lawrence Erlbaum Associates.Oren, N., Panagiotidi, S., Vázquez-Salceda, J., Modgil, S., Luck, M., & Miles, S. (2009). Towards a formalisation of electronic contracting environments. COIN (pp. 156–171).Osman, N., Robertson, D., & Walton, C. (2006). Run-time model checking of interaction and deontic models for multi-agent systems. In AAMAS ’06: Proceedings of the fifth international joint conference on Autonomous agents and multiagent systems (pp. 238–240). New York, NY: ACM.Pace, G., Prisacariu, C., & Schneider, G. (2007). Model checking contracts a case study. In Automated technology for verification and analysis. Lecture Notes in Computer Science (Vol. 4762, pp. 82–97).Rotolo, A., & van der Torre, L. (2011). Rules, agents and norms: Guidelines for rule-based normative multi-agent systems. RuleML Europe, 6826, 52–66.Saeki, M., & Kaiya, H. (2008). Supporting the elicitation of requirements compliant with regulations. In CAiSE ’08 (pp. 228–242).Siena, A., Mylopoulos, J., Perini, A., & Susi, A. (2009). Designing law-compliant software requirements. In Proceedings of the 28th international conference on conceptual modeling, ER ’09 (pp. 472–486).Singh, M. P. Commitments in multiagent systems: Some history, some confusions, some controversies, some prospects.Solaiman, E., Molina-Jimenez, C., & Shrivastav, S. (2003). Model checking correctness properties of electronic contracts. In Service-oriented computing—ICSOC 2003. Lecture Notes in Computer Science (Vol. 2910, pp. 303–318). Berlin: Springer.Telang, P. R., & Singh, M. P. (2009). Conceptual modeling: Foundations and applications. Enhancing tropos with commitments (pp. 417–435).Vázquez-Salceda, J., Confalonieri, R., Gomez, I., Storms, P., Nick Kuijpers, S. P., & Alvarez, S. (2009). Modelling contractually-bounded interactions in the car insurance domain. DIGIBIZ 2009.Viganò, F., & Colombetti, M. (2007). Symbolic model checking of institutions. In ICEC (pp. 35–44).Walton, C. D. (2007). Verifiable agent dialogues. Journal of Applied Logic, 5(2):197–213, Logic-Based Agent Verification.Winkler, S., & Pilgrim, J. (2010). A survey of traceability in requirements engineering and model-driven development. Software and Systems Modeling (SoSyM), 9(4), 529–565.Wooldridge, M., Fisher, M., Huget, M., & Parsons, S. (2002). Model checking multi-agent systems with mable. In AAMAS02 (pp. 952–959). ACM

    FeatureIT : a platform for collaborative software development

    Get PDF
    The development of enterprise software is a complex activity that requires a diverse set of stakeholders to communicate and coordinate in order to achieve a successful outcome. In this dissertation I introduce a high-level physical architecture for a platform titled FeatureIT that has the goal of supporting the collaboration between stakeholders throughout the entire Software Development Life Cycle (SDLC). FeatureIT is the result of unifying the theoretical foundations of the multi-disciplinary field of Computer Supported Cooperative Work (CSCW) with the paradigm and associated technologies of Web 2.0. The architecture was borne out a study of literature in the fields of CSCW, Web 2.0 and software engineering, which facilitated the identification of functional and non-functional requirements necessary for the platform. The design science research methodology was employed to construct this architecture iteratively to satisfy the requirements while validating its efficacy against a comprehensive set of scenarios that typically occur in the SDLC.ComputingM. Sc. (Information Systems

    Systems Engineering and Its Application to Industrial Product Development

    Get PDF
    PREFACE : Mastering the complexity of innovative systems currently looks a challenging goal of design and product development as well as embedding a suitable degree of smartness in devices, machines and equipment to make them able of adapting their operation to variable conditions or effects of a harsh environment. This goal is achieved through a continuous monitoring of the system in service, an effec-tive control of its behavior and a wide connectivity towards many other systems. Only an effective system design and manufacture, able to cover all the required actions, can assure this kind of assessment overall the life cycle since a very ear-ly concept of the product to a full disposal and service. Complexity makes hard managing the product development, because of the number of functions, subsystems, components and related interfaces usually in-volved, like in motor vehicles, robots, railways systems, aircrafts and spacecrafts as well as in large industrial manufacturing systems or very innovative microsys-tems and bioinspired devices. A crucial issue in this activity is performing a bright and complete elicitation of requirements, which need to be fully and suit-ably allocated to the system components, through a clear traceability, especially in systems produced as a result of material processing and assembling of parts. Moreover, the product must fit the requirements associated to some customer needs, innovation targets, and technical standards and be compatible with the manufacturer’s capabilities. As it looks clear from the current state–of–art, since several years the Systems Engineering assures a suitable answer to the needs above mentioned. It provides a methodology to drive the product lifecycle assessment that is implemented through a well defined process, being based on some specific and graphical lan-guages and even formalized in several tools enabling the required analyses, tak-ing advantage of the capabilities of some dedicated commercial software. Those contents lead to create a platform, consisting of a sort of tools chain, which might be used and shared among different industrial and professional partners to digitalize both the information and even the whole industrial product develop-ment, as far as the current strategy referred to as “Industry 4.0 / The Factory of the Future” brightly suggests and supports. The so–called Model Based Systems Engineering (MBSE) is then successfully proposing an effective and modern al-ternative to the document-based approach, using data models as a main element of the design process. Some technical standards already drive the user in imple-menting the Systems Engineering, thus leading to develop a systematic approach the design aimed at satisfying the customer needs. Suitable capabilities in the manufactured system are assured by the so–called architectural frameworks, which support the system development and integration. The Model Based Systems Engineering allows proceeding with a modeling activity which investigates requirements, behavior and architecture through a combined operational, functional and logical analysis, being linked and interop-erated with a mathematical and physical modeling, which is typically more known and widely used within the industrial engineering. A full integration of all the activities of the Product Lifecycle Management (PLM) is currently going on, to include the system architecture definition and its Application Lifecycle Man-agement (ALM) as well as the Product Data Management (PDM), i.e. the design activity together with the tasks of production, testing, homologation and service. A recognized standard certification to qualify the Systems Engineer is even available as the International Council on Systems Engineering (INCOSE) pro-vides. The scenario above described is strongly integrated with the increasing devel-opment of both the network and the cyber–physical systems, for a fully distribut-ed connectivity, to be exploited in advanced smart systems and devices as well as in intelligent manufacturing, according to the most recent strategies of innova-tion as the “Industry 4.0” initiative and the “Lean manufacturing” idea. Simulta-neously, the system smartness and connectivity together increase the demand of data transmission and elaboration, thus linking this topic to the technology of big data management, whilst they benefit of the progress in information technology, through a secure cloud based on the network. The context just described motivates the fast diffusion of the Model Based Systems Engineering as a tool for innovating all the production processes. The increasing demand of specialized software and of educational activities as well as the number of workshops and conferences focused on this topic confirm this trend. However, it might be remarked that several contributions to the literature about the Systems Engineering widely grew up during the last years, thus making the Reader sometimes confused, especially when approaching this topic at first. The Systems Engineering topics are so many that it looks rather difficult mas-tering its skills, without a preliminary classification of contents. Technical do-mains involved are mainly those of engineering and computer science, although many other ones play the role of a daily user of this methodology. According to the most recent development of the Systems Engineering, whose typical applica-tion fields were the software and electronic systems even for space missions, the current focus consists of several industrial systems, being gradually innovated by introducing the tailored solutions of mechatronics. It is worthy noticing that a significant advancement was introduced between the very early implementation of the Systems Engineering and its recent evolution, since several new applica-tions are focused on the production of systems, which need to be manufactured through a material processing. Usually, they exhibit some attributes related both to their physical nature and to the functions performed, thus requiring to model both their functional and physical behaviors together. This need is changing the scenario of the typical applications of the Systems Engineering as software de-sign. This handbook expressively avoids to cover all the typical contents of the spe-cialized literature of the Model Based Systems Engineering, whilst is aimed at making easier a first approach to this topic and sharing a preliminary experience performed by the authors within some industrial domains, by proceeding in the modeling activity in a real industrial environment. The main goal is drawing a sort of simple and hopefully clear roadmap in modeling and developing the in-dustrial and material systems and in implementing the Systems Engineering, par-ticularly in the design activity. Therefore, the target audience of this handbook includes professional engineers, scientists and students dealing with the Applica-tion Lifecycle Management and the system architecture assessment, more than the Product Data Management or the whole Product Lifecycle Management. The approach followed is that of introducing some examples of implementa-tion of the Systems Engineering, by proceeding step by step from the screening of needs and the elicitation of requirements till a synthesis of the system design. Each action will be referred to the literature, related to the implementation of the Systems Modeling Language or SysML and to the use of some tools available on market, thus highlighting benefits, drawbacks and current limitations of some dedicated software or even of some proposed methodologies. Several comments will be provided to describe the troubles shared among some users of the Sys-tems Engineering as they were detected in daily practice by the authors. They wish that this handbook could briefly and gradually provide the Reader with a preliminary guideline to approach professionally the Model Based Systems En-gineering, by understanding its main contents and applying it to the industrial environment. As a desired result, this work might be considered as an integration of some textbooks of Machine Design, and it is aimed at completing the education within Engineering Design or at simply providing a friendly introduction to the Systems Engineerin
    • …
    corecore