752 research outputs found

    Waveguide-Based Photonic Sensors: From Devices to Robust Systems

    Get PDF
    Integrated photonic sensor systems are miniaturized, mass-producible devices that leverage the mature semiconductor fabrication technology and a well-established ecosystem for photonic circuits. This book aims at a holistic treatment of waveguide-based photonic sensor systems by analyzing photonic waveguide design, photonic circuit design and readout design. Across all levels, a special emphasis is given to system-level performance optimization under realistic environmental conditions

    Waveguide-Based Photonic Sensors: From Devices to Robust Systems

    Get PDF
    Integrierte photonische Sensorsysteme bestehen aus miniaturisierten, massenproduktionstauglichen Bauelementen, die sich einerseits die ausgereifte Halbleitertechnologie zu Nutze machen, und die sich andererseits aus dem Baukasten vorhandener photonischer Komponenten bedienen, welche ins-besondere für Telekommunikationsanwendungen entwickelt wurden. Integrierte photonische Sensorsysteme kombinieren einen integrierten photonischen Schaltkreis (photonic integrated circuit, PIC), optoelektronische Lichtquellen und Photodetektoren, sowie elektronische Komponenten für die Signalerzeugung und Signalverarbeitung. Die optoelektronischen Komponenten sind entweder direkt auf dem PIC integriert oder sind externe Komponenten, in beiden Fällen wird das Licht in Wellenleiter auf dem PIC ein- und anschließend wieder ausgekoppelt. In solch einem System dient der PIC als Sensorelement, welches so entworfen wird, dass sich die optische Transmission mit hoher Sensitivität von den zu detektierenden Änderungen in seiner Umgebung beeinflusst wird. Ein wichtiges Beispiel ist ein biochemischer Sensor-PIC, welcher über Wellenleiter mit funktionalisierten Wellenleiteroberflächen die Adsorbtion von Molekülen detektieren kann. Eine Besonderheit ist, dass hierfür keine Markierung der zu detektierenden Molekülgruppen wie z.B. Floureszenzfarbstoffe notwendig sind, weshalb solche Verfahren als „label-free“ bezeichnet werden. Durch die Kompaktheit der entsprechenden Sensorelemente können eine Vielzahl von Sensoren parallel innerhalb eines einzelnen Chips auf einer Fläche im Bereich von nur einem Quadratmillimeter realisiert werden. Gegenstand der vorliegenden Arbeit ist eine ganzheitliche Betrachtung von integrierten photonischen Sensorsystemen auf mehreren Abstraktionsebenen. Die Betrachtung beinhaltet eine detaillierte Analyse des photonischen Wellenleiterdesigns auf der untersten Abstraktionsebene, des photonischen Schaltungsdesigns und des Systemdesigns inklusive der Elektronik, der Lichtquellen und der Photodetektoren auf der mittleren Abstraktionsebene, sowie eine Analyse des Ansteuer- sowie Ausleseverfahrens um hochpräzise, eindeutige Messdaten zu generieren auf der obersten Abstraktionsebene. Ein besonderes Augenmerk liegt hierbei auf der Optimierung der Leistungsfähigeit auf der Gesamtsystemebene, sowie auf der Kompensation von unvermeidbaren Variationen der Komponenteneigenschaften, welche unweigerlich mit einer Massenproduktion sowie mit einem energieeffizienten Sensorbetrieb unter realistischen Umgebungsbedingungen einhergehen. Nach einem kurzen Überblick über wesentliche Ergebnisse dieser Arbeit folgt in den Kapiteln 1 bis 6 die eigentliche Abhandlung der Inhalte. Die darauffolgenden Anhänge beinhalten weiterführende konzeptionelle und mathematische Details sowie Verzeichnisse der Literaturangaben, der Akronyme, der verwendete mathematischen Symbole, der Figuren, der Tabellen und der Publikationen. Im Anschluss daran folgt eine Danksagung so-wie ein Lebenslauf des Autors. Teile dieser Arbeit wurden bereits in Patenten [P1], [P2], internationalen Fachjournalen [J1], [J2], sowie in einem Konferenzbeitrag [C1] publiziert. Die Hauptkapitel 1 bis 6 dieser Arbeit sind wie folgt strukturiert: Kapitel 1 gibt eine Einführung in das Gebiet der integrierten photonischen Sensorsysteme und behandelt hierbei optische Sensoren, relevante Anwendungen und die Entstehung der integrierten photonischen Technologie aus der elektronischen Halbleiterindustrie. Weiterhin wird der Umfang der in dieser Arbeit durchgeführten Analyse aufgezeigt. Kapitel 2 stellt die mathematischen und konzeptionellen Grundlagen integrierter photonischer Sensorsysteme zusammen und behandelt hierbei die Propagation von elektromagnetischen Wellen in photonischen Wellenleitern und den wellenleiterbasierten Sensormechanismus über den effektiven Brechungsindex einer optischen Mode. Weiterhin bietet es einen umfassenden Überblick über das komplette Sensorsystem ausgehend von phasensensitiven photonischen Schaltkreisen über die wichtigsten Systemkomponenten und deren technologischen Herausforderungen bis hin zu einer Gegenüberstellung der geläufigsten Systemkonfigurationen und Auslesekonzepte. Kapitel 3 analysiert das Design integrierter photonischer Wellenleiter für Sensoranwendungen. Dieses Kapitel bietet physikalische Einsichten und umfängliche Designleitlinien, mit Hilfe derer für eine bestimmte Messaufgabe eine passende photonische Integrationsplattform, ein Wellenleitertypus, eine Modenfamilie sowie eine optimierte Wellenleitergeometrie aus-gewählt werden können. Grundlage hierfür ist die Wechselwirkung einer geführten Wellenleitermode mit einer Änderung des Wellenleiterquerschnittes, die durch die zu bestimmende Messgröße hervorgerufen wird. Diese Wechselwirkung wird quantitativ durch den Feldinteraktionsfaktor beschrieben. Kapitel 4 analysiert die Leistungsfähighkeit und die Limitierungen des gesamten photonischen Systems inklusive der phasensensitiven photonischen Schaltkreise, der Lichtquellen und Photodetektoren, sowie des elektrischen Ansteuer- sowie Ausleseverfahrens. Ein besonderes Augenmerk liegt hier-bei auf Systemen, welche für eine kosteneffiziente Großserienproduktion ausgelegt wurden. Hierbei spielen insbesondere Variationen der Komponenteneigenschaften eine Rolle, welche unweigerlich mit einer Massenproduktion sowie einem energieeffizienten Sensorbetrieb unter realistischen Umgebungsbedingungen einhergehen. Kapitel 5 stellt ein besonders robustes photonisches Sensorsystem vor, welches, basierend auf den Erkenntnissen aus den Kapiteln 3 und 4, für Sensoranwendungen außerhalb idealisierter Laborbedingungen und explizit für eine Großserienproduktion geeignet ist. Basierend auf einem integrierten Mach-Zehnder-Interferometer mit drei um 120° phasenverschobenen Ausgangssignalen wird ein spezielles Ansteuer- und Ausleseverfahren demonstriert, welches eine instantane Selbstkalibration und eine jederzeit eindeutige Phasenmessung ermöglicht. Kapitel 6 fasst die wesentlichen Ergebnisse und Schlussfolgerungen zusammen und identifiziert offene Herausforderungen für eine erfolgreiche Kommerzialisierung integrierter photonischer Sensorsysteme

    2×10-13 Fractional Laser-Frequency Stability with a 7-cm Unequal-Arm Mach-Zehnder Interferometer

    Get PDF
    To achieve subpicometer sensitivities in the millihertz band, laser interferometric inertial sensors rely on some form of reduction of the laser-frequency noise, typically by locking the laser to a stable frequency reference, such as the narrow-line-width resonance of an ultrastable optical cavity or an atomic or molecular transition. In this paper, we report on a compact laser-frequency stabilization technique based on an unequal-arm Mach-Zehnder interferometer that is subnanometer stable at 10μHz, subpicometer at 0.5 mHz, and reaches a noise floor of 7fm/Hz at 1 Hz. The interferometer is used in conjunction with a dc servo to stabilize the frequency of a laser down to a fractional instability below 4×10-13 at averaging times from 0.1 to 100 s. The technique offers a wide operating range, does not rely on complex lock-acquisition procedures, and can be readily integrated as part of the optical bench in future gravity missions

    Design of a Multipurpose Photonic Chip Architecture for THz Dual-Comb Spectrometers

    Get PDF
    This article belongs to the Special Issue Terahertz Sensing and Imaging Technologies.In this work, we present a multipurpose photonic integrated circuit capable of generating multiheterodyne complex Dual-Combs (DC) THz signals. Our work focuses on translating the functionality of an electro-optic tunable DC system into a photonic chip employing standard building blocks to ensure the scalability and cost efficiency of the integrated device. The architecture we analyze for integration is based on three stages: a seed comb, a mode selection stage and a DC stage. This final DC stage includes a frequency shifter, a key element to improve the final detection of the THz signals and obtain real-time operation. This investigation covers three key aspects: (1) a solution for comb line selection on GHz spaced combs using OIL or OPLL on photonic chips is studied and evaluated, (2) a simple and versatile scheme to produce a frequency shift using the double sideband suppressed carrier modulation technique and an asymmetric Mach Zehnder Interferometer to filter one of the sidebands is proposed, and (3) a multipurpose architecture that can offer a versatile effective device, moving from application-specific PICs to general-purpose PICs. Using the building blocks (BBs) available from an InP-based foundry, we obtained simulations that offer a high-quality Dual-Comb frequency shifted signal with a side mode suppression ratio around 21 dB, and 41 dB after photodetection with an intermediate frequency of 1 MHz. We tested our system to generate a Dual-Comb with 10 kHz of frequency spacing and an OOK modulation with 5 Gbps which can be down-converted to the THz range by a square law detector. It is also important to note that the presented architecture is multipurpose and can also be applied to THz communications. This design is a step to enable a commercial THz photonic chip for multiple applications such as THz spectroscopy, THz multispectral imaging and THz telecommunications and offers the possibility of being fabricated in a multi-project wafer.This research was supported by Instituto Tecnológico Metropolitano, Universidad Carlos III de Madrid, the EU H2020 Celta project under Grant Agreement 675683, by the Spanish Ministry of Economy and Competitiveness under Project TEC2017-86271-R and by the ATTRACT project funded by the EC under Grant Agreement 777222

    Waveguide-Based Photonic Sensors: From Devices to Robust Systems

    Get PDF
    Integrated photonic sensor systems are miniaturized, mass-producible devices that leverage the mature semiconductor fabrication technology and a well-established ecosystem for photonic circuits. This book aims at a holistic treatment of waveguide-based photonic sensor systems by analyzing photonic waveguide design, photonic circuit design and readout design. Across all levels, a special emphasis is given to system-level performance optimization under realistic environmental conditions

    Nanostructured Plasmonic Interferometers for Ultrasensitive Label-Free Biosensing

    Get PDF
    Optical biosensors that utilize surface plasmon resonance (SPR) technique to analyze the biomolecular interactions have been extensively explored in the last two decades and have become the gold standard for label-free biosensing. These powerful sensing tools allow fast, highly-sensitive monitoring of the interaction between biomolecules in real time, without the need for laborious fluorescent labeling, and have found widely ranging applications from biomedical diagnostics and drug discovery, to environmental sensing and food safety monitoring. However, the prism-coupling SPR geometry is complex and bulky, and has severely limited the integration of this technique into low-cost portable biomedical devices for point-of-care diagnostics and personal healthcare applications. Also, the complex prism-coupling scheme prevents the use of high numerical aperture (NA) optics to increase the spatial resolution for multi-channel, high-throughput detection in SPR imaging mode. This dissertation is focused on the design and fabrication of a promising new class of nanopatterned interferometric SPR sensors that integrate the strengths of miniaturized nanoplasmonic architectures with sensitive optical interferometry techniques to achieve bold advances in SPR biosensing. The nanosensor chips developed provide superior sensing performance comparable to conventional SPR systems, but employing a far simpler collinear optical transmission geometry, which largely facilitates system integration, miniaturization, and low-cost production. Moreover, the fabricated nanostructure-based SPR sensors feature a very small sensor footprint, allowing massive multiplexing on a chip for high-throughput detection. The successful transformation of SPR technique from bulky prism-coupling setup into this low-cost compact plasmonic platform would have a far-reaching impact on point-of-care diagnostic tools and also lead to advances in high-throughput sensing applications in proteomics, immunology, drug discovery, and fundamental cell biology research

    Experimental and theoretical study of an integrated silicon Mach-Zehnder interferometer for chemical sensing applications

    Get PDF
    This thesis involves the design, fabrication and characterization of an integrated optical waveguide sensor. Prior to fabrication, design parameters of the waveguide need to be determined and optimized. The waveguide parameters such as waveguide dimension and the refractive index of the core and cladding are obtained from the single-mode cutoff frequency calculated using either analytical or numerical methods. In this thesis, details of analytical calculations to determine the cutoff frequency in terms of the waveguide parameters will be presented. The method discussed here is Marcatili\u27s approximation. The purpose is to solve the scalar wave equation derived from Maxwell\u27s equations because it describes the mode properties inside the waveguides. The Finite Element Method is used to simulate the electric and magnetic fields inside the waveguides and to determine the propagation characteristics in optical waveguides. This method is suited for problems involving complicated geometries and variable index of refraction. Fabrication of the Integrated Mach-Zehnder Interferometer sensor involves several important standard processes such as Chemical Vapor Deposition (CVD) for thin film fabrication, photolithography for mask transfer, and etching for ridge waveguide formation. The detailed fabrication procedures of the tested Mach-Zehnder Interferometer sensors are discussed. After completion of the sensor fabrication processes, the characterizations were carried out for the thin film of Si02 and PSG, the waveguides and the Y-junction separately. The waveguides were analyzed to make sure that the sensors are working as expected. The experimental testing on the separated waveguide portions of the first batch Integrated Mach-Zehnder Interferometer (MZI) sensors are described. These testing procedures were also performed for the subsequent fabricated batches of the integrated MZI sensors until optimum performance is achieved. A new concept has been proposed for chemical sensing applications. The novelty of the approach is mainly based on utilizing the multi -wavelength or broadband source instead of single wavelength input to the integrated MZI. The shifting of output spectra resulting from the interference has shown the ability of the MZI to analyze the different concentrations of a chemical analyte. The sensitivity of the sensor is also determined from the plot of intensity versus concentration, which is around 0.013 (%ml)-1 and 0.007 (%ml)-1 for the white light source and the 1.5 ~tm broadband source, respectively, while the lowest detectable concentration of ethanol for the sensor detection is around 8% using a intensity variation method and 0.6% using a peak wavelength variation method
    corecore