1,209,503 research outputs found

    Performances of a GNSS receiver for space-based applications

    Get PDF
    Space Vehicle (SV) life span depends on its station keeping capability. Station keeping is the ability of the vehicle to maintain position and orientation. Due to external perturbations, the trajectory of the SV derives from the ideal orbit. Actual positioning systems for satellites are mainly based on ground equipment, which means heavy infrastructures. Autonomous positioning and navigation systems using Global Navigation Satellite Systems (GNSS) can then represent a great reduction in platform design and operating costs. Studies have been carried out and the first operational systems, based on GPS receivers, become available. But better availability of service could be obtained considering a receiver able to process GPS and Galileo signals. Indeed Galileo system will be compatible with the current and the modernized GPS system in terms of signals representation and navigation data. The greater availability obtained with such a receiver would allow significant increase of the number of point solutions and performance enhancement. For a mid-term perspective Thales Alenia Space finances a PhD to develop the concept of a reconfigurable receiver able to deal with both the GPS system and the future Galileo system. In this context, the aim of this paper is to assess the performances of a receiver designed for Geosynchronous Earth Orbit (GEO) applications. It is shown that high improvements are obtained with a receiver designed to track both GPS and Galileo satellites. The performance assessments have been used to define the specifications of the future satellite GNSS receiver

    Exploring Accessibility Features and Plug-ins for Digital Prototyping Tools

    Get PDF
    Many digital systems are found to be inaccessible and a large part of the issue is that accessibility is not considered early enough in the design process. Digital prototyping tools are a powerful resource for designers to quickly explore both low and high fidelity design mockups during initial stages of product design and development. We evaluated 10 popular prototyping tools to understand their built-in and third-party accessibility features. We found that accessible design support is largely from third-party plug-ins rather than prototyping tools\u27 built-in features, and the availability of accessibility support varies from tool to tool. There is potential to improve accessible design by increasing the potential for accessibility to be consider earlier in the design process

    A pilot's subjective analysis of a Cockpit Display of Traffic Information (CDTI)

    Get PDF
    Both the advent of electronic displays for cockpit applications and the availability of high-capacity data transmission systems, linking aicraft with ATC ground computers, offer the opportunity of expanding the pilots' role in the distributive management process. A critical element in this process is believed to be the presentation to the pilot of his traffic situation. A representative cockpit display of traffic information (CDTI) system is presented as viewed from the pilot in the cockpit, and the research results from flight tests presented. The use of advanced controls and displays allows for presentation to the pilot, large quantities of information that he has not had before. The real challenge in the design of an operational CDTI system will be the satisfaction of needs for information and the presentation of all necessary information, only in a useable format in order to avoid clutter. Even though a reasonably large display was utilized in these tests, display clutter was the primary problem from the standpoint of information assimilation

    Constellation Ground Systems Launch Availability Analysis: Enhancing Highly Reliable Launch Systems Design

    Get PDF
    Success of the Constellation Program's lunar architecture requires successfully launching two vehicles, Ares I/Orion and Ares V/Altair, within a very limited time period. The reliability and maintainability of flight vehicles and ground systems must deliver a high probability of successfully launching the second vehicle in order to avoid wasting the on-orbit asset launched by the first vehicle. The Ground Operations Project determined which ground subsystems had the potential to affect the probability of the second launch and allocated quantitative availability requirements to these subsystems. The Ground Operations Project also developed a methodology to estimate subsystem reliability, availability, and maintainability to ensure that ground subsystems complied with allocated launch availability and maintainability requirements. The verification analysis developed quantitative estimates of subsystem availability based on design documentation, testing results, and other information. Where appropriate, actual performance history was used to calculate failure rates for legacy subsystems or comparative components that will support Constellation. The results of the verification analysis will be used to assess compliance with requirements and to highlight design or performance shortcomings for further decision making. This case study will discuss the subsystem requirements allocation process, describe the ground systems methodology for completing quantitative reliability, availability, and maintainability analysis, and present findings and observation based on analysis leading to the Ground Operations Project Preliminary Design Review milestone

    Reliability studies of a high-power proton accelerator for accelerator-driven system applications for nuclear waste transmutation

    Get PDF
    The main effort of the present study is to analyze the availability and reliability of a high-performance linac (linear accelerator) conceived for Accelerator-Driven Systems (ADS) purpose and to suggest recommendations, in order both to meet the high operability goals and to satisfy the safety requirements dictated by the reactor system. Reliability Block Diagrams (RBD) approach has been considered for system modelling, according to the present level of definition of the design: component failure modes are assessed in terms of Mean Time Between Failure (MTBF) and Mean Time To Repair (MTTR), reliability and availability figures are derived, applying the current reliability algorithms. The lack of a well-established component database has been pointed out as the main issue related to the accelerator reliability assessment. The results, affected by the conservative character of the study, show a high margin for the improvement in terms of accelerator reliability and availability figures prediction. The paper outlines the viable path towards the accelerator reliability and availability enhancement process and delineates the most proper strategies. The improvement in the reliability characteristics along this path is shown as well

    Instant restore after a media failure

    Full text link
    Media failures usually leave database systems unavailable for several hours until recovery is complete, especially in applications with large devices and high transaction volume. Previous work introduced a technique called single-pass restore, which increases restore bandwidth and thus substantially decreases time to repair. Instant restore goes further as it permits read/write access to any data on a device undergoing restore--even data not yet restored--by restoring individual data segments on demand. Thus, the restore process is guided primarily by the needs of applications, and the observed mean time to repair is effectively reduced from several hours to a few seconds. This paper presents an implementation and evaluation of instant restore. The technique is incrementally implemented on a system starting with the traditional ARIES design for logging and recovery. Experiments show that the transaction latency perceived after a media failure can be cut down to less than a second and that the overhead imposed by the technique on normal processing is minimal. The net effect is that a few "nines" of availability are added to the system using simple and low-overhead software techniques

    A VISUAL DESIGN METHOD AND ITS APPLICATION TO HIGH RELIABILITY HYPERMEDIA SYSTEMS

    Get PDF
    This work addresses the problem of the production of hypermedia documentation for applications that require high reliability, particularly technical documentation in safety critical industries. One requirement of this application area is for the availability of a task-based organisation, which can guide and monitor such activities as maintenance and repair. In safety critical applications there must be some guarantee that such sequences are correctly presented. Conventional structuring and design methods for hypermedia systems do not allow such guarantees to be made. A formal design method that is based on a process algebra is proposed as a solution to this problem. Design methods of this kind need to be accessible to information designers. This is achieved by use of a technique already familiar to them: the storyboard. By development of a storyboard notation that is syntactically equivalent to a process algebra a bridge is made between information design and computer science, allowing formal analysis and refinement of the specification drafted by information designers. Process algebras produce imperative structures that do not map easily into the declarative formats used for some hypermedia systems, but can be translated into concurrent programs. This translation process, into a language developed by the author, called ClassiC, is illustrated and the properties that make ClassiC a suitable implementation target discussed. Other possible implementation targets are evaluated, and a comparative illustration given of translation into another likely target, Java

    Design framework for the development of dual heat recovery system in photo-voltaic powered air conditioning systems

    Get PDF
    Abstract: Energy regeneration through heat recovery is practically possible for maximizing energy obtained from the sun, by recovering and reusing the heat that is typically lost within energy dependent electrical equipment’s. The study is aimed at developing an efficient and cost effective heat recovery system, which is an improvement to existing variants. Solar thermal systems utilize flat plates or evacuated tube collectors which absorb the heat from the sun. Similarly, Photo-Voltaic (PV) systems absorb solar irradiation to generate electricity. A combination of both technologies results in Solar Photo-Voltaic Thermal (PV/T) systems wherein thermal plates or liquid contained tubes cool PV collectors resulting in increased efficiency. The PV cooling mechanism is important because excessive heat in PV panels generates high resistance, which impedes the performance of the solar cell and in the process, results in lower efficiency. PV/T systems are currently sold at relatively high cost and their availability is limited. The study focuses on the development of a dual heat recovery system for harnessing both the heat build-up on the PV plates and the heat generated from the heat exchanger exhaust outlet of a solar air- conditioning system, by incorporating electro-thermal generators and Peltier devices for the optimization process. The research is sectioned into design, prototype development, and a testing phase. The focus of this paper is to share the design phase of the project. The design highlighted herein is a cost effective and highly efficient PV/T model with a different heat absorption approach in comparison to conventional PV/T systems. The heat recovery system design is complete and is currently undergoing extensive tests to complete the testing and optimization phase
    corecore