305,174 research outputs found

    An Object-Oriented Framework for Robust Multivariate Analysis

    Get PDF
    Taking advantage of the S4 class system of the programming environment R, which facilitates the creation and maintenance of reusable and modular components, an object-oriented framework for robust multivariate analysis was developed. The framework resides in the packages robustbase and rrcov and includes an almost complete set of algorithms for computing robust multivariate location and scatter, various robust methods for principal component analysis as well as robust linear and quadratic discriminant analysis. The design of these methods follows common patterns which we call statistical design patterns in analogy to the design patterns widely used in software engineering. The application of the framework to data analysis as well as possible extensions by the development of new methods is demonstrated on examples which themselves are part of the package rrcov.

    Improving the Design and Implementation of Software Systems uses Aspect Oriented Programming

    Get PDF
    A design pattern is used as a static reusable component of object oriented design in the many patterns catalogue. The regular design pattern does not show any collaboration of shared resource between patterns in the software design. But generative design pattern is a new design pattern that shows the relationship and shared resources between them. The generative design pattern is considered a dynamic and active design, which creating new design as a result of collaboration and resource usage between two designs. This paper will demonstrate benefit and the structure of generative pattern. It also demonstrates the creation of a desktop application for modeling generative design pattern. The Java language creates the desktop application. The application provides many features, for instance, users can place drawing objects such as class, Interface and Abstract Class object. The users also can draw different connection line between these objects, such as simple, inheritance, composition lines. This project shows the implementation details techniques of drawing objects and their connection. It also provides an open source code that many novice developers can understand and analysis for further development. The application source code gives the developers new ideas and skills in object oriented programming and graphical user interface in Java language

    Towards the definition of a pattern sequence for real-time applications using a model-driven engineering approach

    Get PDF
    Real-Time (RT) systems exhibit specific characteristics that make them particularly sensitive to architectural decissions. Design patterns help integrating the desired timing behaviour with the rest of the elements of the application architecture. This paper reports a pattern story that shows how a component-based design has been implemented using periodic concurrent tasks with RT requirements. This work has been done in the context of the development of robotic applications using a Model-Driven Software Development (MDSD) approach. In this context the model-to-code transformations are designed taking into account both the system requirements and the patterns that satisfy them. MDSD provides the conceptual technology for implementing a pattern-guided transition from component-based models to object-oriented implementations. The results of applying the described story of patterns are shown by an application that initializes, configures and schedules the execution of platform-specific components.This work has been partially supported by the Spanish CICYT Project EXPLORE (ref. TIN2009-08572), and the Fundación Séneca Regional Project COMPAS-R (ref. 11994/PI/09)

    An Adaptive Integration Architecture for Software Reuse

    Get PDF
    The problem of building large, reliable software systems in a controlled, cost-effective way, the so-called software crisis problem, is one of computer science\u27s great challenges. From the very outset of computing as science, software reuse has been touted as a means to overcome the software crisis issue. Over three decades later, the software community is still grappling with the problem of building large reliable software systems in a controlled, cost effective way; the software crisis problem is alive and well. Today, many computer scientists still regard software reuse as a very powerful vehicle to improve the practice of software engineering. The advantage of amortizing software development cost through reuse continues to be a major objective in the art of building software, even though the tools, methods, languages, and overall understanding of software engineering have changed significantly over the years. Our work is primarily focused on the development of an Adaptive Application Integration Architecture Framework. Without good integration tools and techniques, reuse is difficult and will probably not happen to any significant degree. In the development of the adaptive integration architecture framework, the primary enabling concept is object-oriented design supported by the unified modeling language. The concepts of software architecture, design patterns, and abstract data views are used in a structured and disciplined manner to established a generic framework. This framework is applied to solve the Enterprise Application Integration (EM) problem in the telecommunications operations support system (OSS) enterprise marketplace. The proposed adaptive application integration architecture framework facilitates application reusability and flexible business process re-engineering. The architecture addresses the need for modern businesses to continuously redefine themselves to address changing market conditions in an increasingly competitive environment. We have developed a number of Enterprise Application Integration design patterns to enable the implementation of an EAI framework in a definite and repeatable manner. The design patterns allow for integration of commercial off-the-shelf applications into a unified enterprise framework facilitating true application portfolio interoperability. The notion of treating application services as infrastructure services and using business processes to combine them arbitrarily provides a natural way of thinking about adaptable and reusable software systems. We present a mathematical formalism for the specification of design patterns. This specification constitutes an extension of the basic concepts from many-sorted algebra. In particular, the notion of signature is extended to that of a vector, consisting of a set of linearly independent signatures. The approach can be used to reason about various properties including efforts for component reuse and to facilitate complex largescale software development by providing the developer with design alternatives and support for automatic program verification

    Design composition

    Get PDF
    Object-oriented software development has proven effective for systems development, but the creation of reusable and changeable software architectures is still a challenging task. Design patterns capture the expertise for reusable design solutions, but there is no methodical approach to providing conceptual design building blocks in tangible and composable form. Design components have been suggested to address this problem. We suggest design composition with design components, role models and role constraints. We claim that design expertise in composable form with explicit design constraints and with explicit documentation has many advantages. It provides alternative views on software systems at a high level of abstraction, and it can help in prohibiting known design flaws as well as design blurring and degradation during subsequent modifications. In this paper, we refine the notion of design components, include role models and constraints, and discuss component types as well as design composition.Facultad de Informátic

    Compositional design reuse

    Get PDF
    Object-oriented software development has proven effective for systems development, but the creation of reusable and changeable software architectures is still a challenging task. Design patterns capture the expertise for reusable design solutions, but there is no methodical approach to providing conceptual design building blocks in tangible and composable form. Design components have been suggested to address this problem. We suggest compositional design reuse, which is a combined approach utilizing the ideas of design components and role models. We claim that design expertise in composable form with explicit documentation provides many advantages. It provides alternative views on software systems at a high level of abstraction, and it can help in prohibiting known design flaws as well as design blurring and degradation during subsequent modifications. In this paper, we refine the notion of design components, include role models, and discuss component types as well as design composition.Eje: Ingeniería de softwareRed de Universidades con Carreras en Informática (RedUNCI

    Programming language abstractions for extensible software components

    Get PDF
    With the growing demand for software systems that can cope with an increasing range of information processing tasks, the reuse of code from existing systems is essential to reduce the production costs of systems as well as the time to manufacture new software applications. For this reason, component-based software development techniques gain increasing attention in industry and research. Component technology is driven by the promise of building software by composing off-the-shelf components provided by a software component industry. Therefore, component technology emphasizes the independent development and deployment of components. Even though components look like perfect reusable assets, they embody general software solutions that need to be adapted to deploymentspecific needs and therefore cannot be deployed "as is" in general. Furthermore, as architectural building blocks, components are subject to continuous change. For these reasons, it is essential that components can easily be extended by both the component manufacturer to create new versions of components and by thirdparties that have to adapt components for use in specific software systems. Since in both cases concrete changes cannot be foreseen in general, mechanisms to integrate unanticipated extensions into components and component systems are required. While today many modern programming techniques, methodologies, and languages provide means that are well suited for creating static black-box components, the design and implementation of extensible components and extensible software systems often remains a challenge. In practice, extensibility is mostly achieved through ad-hoc techniques, like the disciplined use of design patterns and component frameworks, often in conjunction with meta-programming. The use of design patterns and component frameworks requires a rigorous coding discipline and often forces programmers to write tedious "boilerplate" code by hand, which makes this approach fragile and error-prone. Meta-programming techniques on the other hand are rather code-centric and mostly source code-based. Therefore, they are often not very suitable for today's component technology practice that stresses the binary reuse of black-box components. In this thesis I argue that technical difficulties in the development of extensible software components are due to the lack of appropriate programming language abstractions. To overcome the problems, concrete programming language mechanisms are proposed to facilitate the creation of extensible software. The proposed language features are strongly typed to help the programmer extend systems safely and consistently. The first part of the thesis illustrates the vision of truly extensible software components by proposing a simple theoretical model of first-class components built on top of a conventional class-based object-oriented language. This typed model includes a small set of primitives to dynamically build, compose, and extend software components safely, while supporting features like explicit context dependencies, late composition, unanticipated component extensibility, and strong encapsulation. The second part takes some ideas from the theoretical model and applies them in the design of the programming language Keris. Keris extends Java with an expressive module system featuring extensible modules. The main contributions are: A module system that combines the benefits of classical module systems for imperative languages with the advantages of modern component-oriented formalisms. In particular, modules are reusable, generic software components that can be linked with different cooperating modules without the need for resolving context dependencies by hand. A module composition scheme based on aggregation that makes the static architecture of a system explicit, and A type-safe mechanism for extending atomic modules aswell as fully linked systems statically by replacing selected subsystems with compatible versions without needing to re-link the full system. The extensibility mechanism is non-invasive; i.e. it preserves the original version and does not require access to source code. The overall design of the language was guided by the aim to develop a pragmatic, implementable, and conservative extension of Java which supports software development according to the open/closed principle: Systems written in Keris are closed in the sense that they can be executed, but they are open for unanticipated extensions that add, refine, or replace modules or whole subsystems. The last part of the thesis finally presents a case study which compares an extensible Java compiler implemented using mainstream object-oriented language features with one that was written in Keris. It shows how in practice, extensible modules can be used to develop extensible systems safely and efficiently

    Quality-aware model-driven service engineering

    Get PDF
    Service engineering and service-oriented architecture as an integration and platform technology is a recent approach to software systems integration. Quality aspects ranging from interoperability to maintainability to performance are of central importance for the integration of heterogeneous, distributed service-based systems. Architecture models can substantially influence quality attributes of the implemented software systems. Besides the benefits of explicit architectures on maintainability and reuse, architectural constraints such as styles, reference architectures and architectural patterns can influence observable software properties such as performance. Empirical performance evaluation is a process of measuring and evaluating the performance of implemented software. We present an approach for addressing the quality of services and service-based systems at the model-level in the context of model-driven service engineering. The focus on architecture-level models is a consequence of the black-box character of services

    A Parsing Scheme for Finding the Design Pattern and Reducing the Development Cost of Reusable Object Oriented Software

    Full text link
    Because of the importance of object oriented methodologies, the research in developing new measure for object oriented system development is getting increased focus. The most of the metrics need to find the interactions between the objects and modules for developing necessary metric and an influential software measure that is attracting the software developers, designers and researchers. In this paper a new interactions are defined for object oriented system. Using these interactions, a parser is developed to analyze the existing architecture of the software. Within the design model, it is necessary for design classes to collaborate with one another. However, collaboration should be kept to an acceptable minimum i.e. better designing practice will introduce low coupling. If a design model is highly coupled, the system is difficult to implement, to test and to maintain overtime. In case of enhancing software, we need to introduce or remove module and in that case coupling is the most important factor to be considered because unnecessary coupling may make the system unstable and may cause reduction in the system's performance. So coupling is thought to be a desirable goal in software construction, leading to better values for external software qualities such as maintainability, reusability and so on. To test this hypothesis, a good measure of class coupling is needed. In this paper, based on the developed tool called Design Analyzer we propose a methodology to reuse an existing system with the objective of enhancing an existing Object oriented system keeping the coupling as low as possible.Comment: 15 page
    corecore