515 research outputs found

    Performance of Induction Machines

    Get PDF
    Induction machines are one of the most important technical applications for both the industrial world and private use. Since their invention (achievements of Galileo Ferraris, Nikola Tesla, and Michal Doliwo-Dobrowolski), they have been widely used in different electrical drives and as generators, thanks to their features such as reliability, durability, low price, high efficiency, and resistance to failure. The methods for designing and using induction machines are similar to the methods used in other electric machines but have their own specificity. Many issues discussed here are based on the fundamental achievements of authors such as Nasar, Boldea, Yamamura, Tegopoulos, and Kriezis, who laid the foundations for the development of induction machines, which are still relevant today. The control algorithms are based on the achievements of Blaschke (field vector-oriented control) and Depenbrock or Takahashi (direct torque control), who created standards for the control of induction machines. Today’s induction machines must meet very stringent requirements of reliability, high efficiency, and performance. Thanks to the application of highly efficient numerical algorithms, it is possible to design induction machines faster and at a lower cost. At the same time, progress in materials science and technology enables the development of new machine topologies. The main objective of this book is to contribute to the development of induction machines in all areas of their applications

    FPGA Implementation of a DB – DTFC Scheme for Induction Machines

    Get PDF
    Induction machines have been used in a wide range of applications due to its robustness and its low price. These characteristics make the induction machine a suitable option for industrial and home environments especially for those applications where the required speed is constant and the load does not change drastically. As an alternative to the induction machine, the synchronous machine, particularly the Permanent Magnet machine has been used as well in a wide range of applications, as it is the case with electrical traction systems for different vehicles. But the recent increase in the price of magnets and the difficulty to find a reliable source for massive production, have become an important reason to try to move the market to magnet-free alternatives, such as reluctance and induction machines. However, controlling an induction machine has been a difficult task since its invention, especially during highly dynamic regimes, where the required torque/speed changes constantly. In order to solve this problem several methods have been developed over the years, the most used are field oriented control and direct torque control. Both methods use the torque and the magnitude of the magnetic flux as controlled variables. But, even if they provide an acceptable response, they still present some limitations as torque ripple, current ripple, overshot, etc. In order to improve the performance of the induction machines when working in demanding regimes numerous improvements have been made to the existing control methods, and also new methods have been developed. One of the methods recently developed is called Deadbeat Direct Torque and Flux Control. This method has been developed at the Departments of Mechanical Engineering and Electrical and Computer Engineering, University of Wisconsin, Madison. The DB-DTFC is presented as an alternative that promises to reduce considerably the lacks presented in the previous methods. In principle this new method is supposed to provide an instantaneous response without overshoot or torque ripple under perfect conditions. According to all the bibliography found, this technique has been only implemented in a micro controller and exclusively by the mentioned research group. This makes the thesis even more interesting since it may be the second documented attempt to implement such system and the first time it is done on an FPGA

    Induction Motors

    Get PDF
    AC motors play a major role in modern industrial applications. Squirrel-cage induction motors (SCIMs) are probably the most frequently used when compared to other AC motors because of their low cost, ruggedness, and low maintenance. The material presented in this book is organized into four sections, covering the applications and structural properties of induction motors (IMs), fault detection and diagnostics, control strategies, and the more recently developed topology based on the multiphase (more than three phases) induction motors. This material should be of specific interest to engineers and researchers who are engaged in the modeling, design, and implementation of control algorithms applied to induction motors and, more generally, to readers broadly interested in nonlinear control, health condition monitoring, and fault diagnosis

    Recycling process of permanent magnets by polymer binder using injection molding technique

    Get PDF
    Seltene Erden-Elemente (REE) werden aufgrund ihrer technologischen Bedeutung und geopolitischen Versorgungskriterien als kritische Metalle eingestuft. Sie werden in einem breiten Spektrum von Anwendungen eingesetzt, einschließlich der Herstellung von Magneten, Batterieelektroden, Katalysatoren und Polierpulver. Viele dieser Anwendungen sind wichtig für die sog. „grünen“ Technologien. Dauermagneten sind hinsichtlich der Marktgröße die wichtigste Anwendung insbesondere für Neodym-, Praseodym-, Dysprosium- und Terbium-Magnete, die in NdFeB-Magneten verwendet werden. Die Nachfrage nach Seltenerdelementen für die Herstellung von Magneten nimmt zu und es wird erwartet, dass sich dieser Trend in den kommenden Jahren fortsetzt. Um die mit der Nachfrage verbundenen Risiken zu verringern, wurden Maßnahmen zur Entwicklung von Recyclingtechnologien zur Wiederverwendung von NdFeB aus Magneten ergriffen. Während der industrielle NdFeB-Schrott bereits zurückgewonnen wird, ist das Recycling von Magneten aus Altprodukten noch weitergehend auf Labor- und Pilotprojekte beschränkt. Diese Abhandlung stellt die Ergebnisse der Materialanalyse vor, die die Möglichkeit bestätigen, magnetische Materialien durch die Einarbeitung in eine Polymermatrix zu recyceln und mittels Spritzgussprozess vorzubereiten. Kern der vorliegenden Dissertation ist die Frage, wie der geschlossene Kreislauf und das Recyclingverfahren von Neodynium Magneten aus Elektroschrott gestattet sein soll. Um diese Frage zu beantworten, sind folgende Aspekte relevant: • Die Wahl der Technologien/Prozesse, die für das Recycling eingesetzt werden. • Nachweis der Wiederverwendung von Neodym-Magneten, die aus WEEE (Waste of Electrical and Electronic Equipment) gewonnen sind. • Herstellung und Analyse von Polymer/Magnet- Compound. • Einfluss der Magnetpartikel, abhängig von ihrer Anzahl und Größe, auf die Viskosität und Fließverhalten des Materials während des Spritzgussprozess. • Analyse des Einflusses der Restmagnetisierung auf das Fließverhalten und einer gezielten Anordnung von magnetischen Partikeln im Bauteil. • Technisch-ökonomische Analyse, die entscheidend dazu beitragen wird, ob und in welchem Ausmaß die Einführung des Prozesses erreichbar ist und damit geschlossene Kreisläufe möglich sind. Auf der Grundlage einer umfangreichen Analyse wurden die optimalen Prozessparameter und die Spritzgussmöglichkeiten des verwendeten Materials vorgestellt. Die Nachfrage nach NdFeB-Magneten in Motoranwendungen wächst und wird in den nächsten Jahren voraussichtlich noch zunehmen. Vor allem die Nachfrage nach E-Bike und E-Autos gewinnt an Bedeutung. Infolgedessen wird die Nachfrage nach schweren Seltenen Erden steigen, was die Entwicklung von Recyclingsystemen für diese Materialien erforderlich macht.Rare earth elements (REE) are classified as critical metals due to their technological importance and geopolitical supply criteria. They are used in a wide range of applications, including the manufacture of magnets, battery electrodes, catalysts, and polishing powders. Many of these applications are important for so-called "green" technologies. Permanent magnets are the most important application in terms of market size, particularly for neodymium, praseodymium, dysprosium, and terbium magnets used in NdFeB magnets. The demand for rare earth elements for the production of magnets is increasing and this trend is expected to continue in the coming years (Langkau S. 2020; Li J. 2020; Goodenough K.M. et al. 2018). To mitigate the risks associated with that demand, have been taken to develop recycling technologies to reuse NdFeB magnets. While industrial scrap is already being recovered, recycling of magnets from end-of-life products is still further limited to laboratory and pilot projects. The following work presents the results of the material analysis, which confirm the possibility to recycle magnetic materials by using a polymer matrix. The main goal of this dissertation is the question of how the closed-loop and recycling process of neodymium magnets from electronic waste should be designed. To answer this question, the following aspects are relevant: • The choice of technologies/processes used for recycling and processing. • Evidence of reuse of neodymium magnets obtained from WEEE (Waste of Electrical and Electronic Equipment). • Process flow analysis and final product evaluation (polymer/magnet compound). • The effect of magnetic particles characteristics (size, distribution, and contribution) on the viscosity and flow behavior of the material during the injection molding process. • Analysis of residual magnetization on the flow behavior and a targeted arrangement of magnetic particles in the component. • Technical-economic analysis, which decisively contributes to whether and to what extent the introduction of the process is achievable. Based on an extensive analysis, the optimal process parameters and the maximum injection possibilities of the material used is discussed along the whole processing line. The demand for NdFeB magnets in motor applications is growing and is expected to increase in the coming years. In particular, the demand for e-bikes and e-vehicles is gaining importance (Kampker A. et al. 2021; Pollák F. 2021; Flores P.J 2021). As a result, the demand for heavy rare earths will increase, necessitating the development of recycling systems for these materials, where this thesis is one basic concept to close the loop

    SOLID-SHELL FINITE ELEMENT MODELS FOR EXPLICIT SIMULATIONS OF CRACK PROPAGATION IN THIN STRUCTURES

    Get PDF
    Crack propagation in thin shell structures due to cutting is conveniently simulated using explicit finite element approaches, in view of the high nonlinearity of the problem. Solidshell elements are usually preferred for the discretization in the presence of complex material behavior and degradation phenomena such as delamination, since they allow for a correct representation of the thickness geometry. However, in solid-shell elements the small thickness leads to a very high maximum eigenfrequency, which imply very small stable time-steps. A new selective mass scaling technique is proposed to increase the time-step size without affecting accuracy. New ”directional” cohesive interface elements are used in conjunction with selective mass scaling to account for the interaction with a sharp blade in cutting processes of thin ductile shells

    Technology 2000, volume 1

    Get PDF
    The purpose of the conference was to increase awareness of existing NASA developed technologies that are available for immediate use in the development of new products and processes, and to lay the groundwork for the effective utilization of emerging technologies. There were sessions on the following: Computer technology and software engineering; Human factors engineering and life sciences; Information and data management; Material sciences; Manufacturing and fabrication technology; Power, energy, and control systems; Robotics; Sensors and measurement technology; Artificial intelligence; Environmental technology; Optics and communications; and Superconductivity

    Mechanical Engineering

    Get PDF
    The book substantially offers the latest progresses about the important topics of the "Mechanical Engineering" to readers. It includes twenty-eight excellent studies prepared using state-of-art methodologies by professional researchers from different countries. The sections in the book comprise of the following titles: power transmission system, manufacturing processes and system analysis, thermo-fluid systems, simulations and computer applications, and new approaches in mechanical engineering education and organization systems

    The statistical modelling of production processes of biodegradable aliphatic aromatic co-polyester fibres used in the textile industry

    Get PDF
    Since the success of production processes in the textile industry depends on good planning and having a clear programme from the raw materials until the final product, the focus of this research is in the modelling of the production process of biodegradable aliphatic-aromatic co-polyester (AAC) fibres. The statistical modelling of the effects of the extrusion temperature profile and polymer grade on the properties of linear AAC as-spun fibres aims to find the better linear grade to be used. The investigation helped to establish a statistical method to optimize the extrusion temperature profile required for extrusion of AAC fibres. The effects of melt spinning conditions together with linear and branched grades of AACs on as-spun fibres were statistically modelled, programmed and evaluated. To identify the effect of the drawing process, the effect of multi stage hot and cold drawing process on AACs fibres has been statistically investigated and modelled. The additional effect gained from twisting the drawn fibres has been investigated in terms of process parameters interactions. Forecasting models have been set for optimizing and controlling the manufacturing of biodegradable AACs fibres. The novel statistical factorial method will help when taking the best experimental decision controlled by the design factors

    Torque Control

    Get PDF
    This book is the result of inspirations and contributions from many researchers, a collection of 9 works, which are, in majority, focalised around the Direct Torque Control and may be comprised of three sections: different techniques for the control of asynchronous motors and double feed or double star induction machines, oriented approach of recent developments relating to the control of the Permanent Magnet Synchronous Motors, and special controller design and torque control of switched reluctance machine
    • …
    corecore