39,687 research outputs found

    Integrating IVHM and asset design

    Get PDF
    Integrated Vehicle Health Management (IVHM) describes a set of capabilities that enable effective and efficient maintenance and operation of the target vehicle. It accounts for the collecting of data, conducting analysis, and supporting the decision-making process for sustainment and operation. The design of IVHM systems endeavours to account for all causes of failure in a disciplined, systems engineering, manner. With industry striving to reduce through-life cost, IVHM is a powerful tool to give forewarning of impending failure and hence control over the outcome. Benefits have been realised from this approach across a number of different sectors but, hindering our ability to realise further benefit from this maturing technology, is the fact that IVHM is still treated as added on to the design of the asset, rather than being a sub-system in its own right, fully integrated with the asset design. The elevation and integration of IVHM in this way will enable architectures to be chosen that accommodate health ready sub-systems from the supply chain and design trade-offs to be made, to name but two major benefits. Barriers to IVHM being integrated with the asset design are examined in this paper. The paper presents progress in overcoming them, and suggests potential solutions for those that remain. It addresses the IVHM system design from a systems engineering perspective and the integration with the asset design will be described within an industrial design process

    Incorporating interactive 3-dimensional graphics in astronomy research papers

    Full text link
    Most research data collections created or used by astronomers are intrinsically multi-dimensional. In contrast, all visual representations of data presented within research papers are exclusively 2-dimensional. We present a resolution of this dichotomy that uses a novel technique for embedding 3-dimensional (3-d) visualisations of astronomy data sets in electronic-format research papers. Our technique uses the latest Adobe Portable Document Format extensions together with a new version of the S2PLOT programming library. The 3-d models can be easily rotated and explored by the reader and, in some cases, modified. We demonstrate example applications of this technique including: 3-d figures exhibiting subtle structure in redshift catalogues, colour-magnitude diagrams and halo merger trees; 3-d isosurface and volume renderings of cosmological simulations; and 3-d models of instructional diagrams and instrument designs.Comment: 18 pages, 7 figures, submitted to New Astronomy. For paper with 3-dimensional embedded figures, see http://astronomy.swin.edu.au/s2plot/3dpd

    Development of an ontology supporting failure analysis of surface safety valves used in Oil & Gas applications

    Get PDF
    Treball desenvolupat dins el marc del programa 'European Project Semester'.The project describes how to apply Root Cause Analysis (RCA) in the form of a Failure Mode Effect and Criticality Analysis (FMECA) on hydraulically actuated Surface Safety Valves (SSVs) of Xmas trees in oil and gas applications, in order to be able to predict the occurrence of failures and implement preventive measures such as Condition and Performance Monitoring (CPM) to improve the life-span of a valve and decrease maintenance downtime. In the oil and gas industry, valves account for 52% of failures in the system. If these failures happen unexpectedly it can cause a lot of problems. Downtime of the oil well quickly becomes an expensive problem, unscheduled maintenance takes a lot of extra time and the lead-time for replacement parts can be up to 6 months. This is why being able to predict these failures beforehand is something that can bring a lot of benefits to a company. To determine the best course of action to take in order to be able to predict failures, a FMECA report is created. This is an analysis where all possible failures of all components are catalogued and given a Risk Priority Number (RPN), which has three variables: severity, detectability and occurrence. Each of these is given a rating between 0 and 10 and then the variables are multiplied with each other, resulting in the RPN. The components with an RPN above an acceptable risk level are then further investigated to see how to be able to detect them beforehand and how to mitigate the risk that they pose. Applying FMECA to the SSV mean breaking the system down into its components and determining the function, dependency and possible failures. To this end, the SSV is broken up into three sub-systems: the valve, the actuator and the hydraulic system. The hydraulic system is the sub-system of the SSV responsible for containing, transporting and pressurizing of the hydraulic fluid and in turn, the actuator. It also contains all the safety features, such as pressure pilots, and a trip system in case a problem is detected in the oil line. The actuator is, as the name implies, the sub-system which opens and closes the valve. It is made up of a number of parts such as a cylinder, a piston and a spring. These parts are interconnected in a number of ways to allow the actuator to successfully perform its function. The valve is the actual part of the system which interacts with the oil line by opening and closing. Like the actuator, this sub-system is broken down into a number of parts which work together to perform its function. After breaking down and defining each subsystem on a functional level, a model was created using a functional block diagram. Each component also allows for the defining of dependencies and interactions between the different components and a failure diagram for each component. This model integrates the three sub-systems back into one, creating a complete picture of the entire system which can then be used to determine the effects of different failures in components to the rest of the system. With this model completed we created a comprehensive FMECA report and test the different possible CPM solutions to mitigate the largest risks
    • …
    corecore