1,822 research outputs found

    Short-Term Robustness of Production Management Systems: New Methodology

    Get PDF
    This paper investigates the short-term robustness of production planning and control systems. This robustness is defined here as the systems ability to maintain short-term service probabilities (i.e., the probability that the fill rate remains within a prespecified range), in a variety of environments (scenarios). For this investigation, the paper introduces a heuristic, stagewise methodology that combines the techniques of discrete-event simulation, heuristic optimization, risk or uncertainty analysis, and bootstrapping. This methodology compares production control systems, subject to a short-term fill-rate constraint while minimizing long- term work-in-process (WIP). This provides a new tool for performance analysis in operations management. The methodology is illustrated via the example of a production line with four stations and a single product; it compares Kanban, Conwip, Hybrid, and Generic production control schemes.manufacturing;inventory;risk analysis;robustness and sensitivity analysis;scenarios

    Customized Pull Systems for Single-Product Flow Lines

    Get PDF
    Traditionally pull production systems are managed through classic control systems such as Kanban, Conwip, or Base stock, but this paper proposes ‘customized’ pull control. Customization means that a given production line is managed through a pull control system that in principle connects each stage of that line with each preceding stage; optimization of the corresponding simulation model, however, shows which of these potential control loops are actually implemented. This novel approach may result in one of the classic systems, but it may also be another type: (1) the total line may be decomposed into several segments, each with its own classic control system (e.g., segment 1 with Kanban, segment 2 with Conwip); (2) the total line or segments may combine different classic systems; (3) the line may be controlled through a new type of system. These different pull systems are found when applying the new approach to a set of twelve production lines. These lines are configured through the application of a statistical (Plackett-Burman) design with ten factors that characterize production lines (such as line length, demand variability, and machine breakdowns).Pull production / inventory;sampling;optimization;evolutionary algorithm

    Optimization Versus Robustness in Simulation: A Practical Methodology, With a Production-Management Case-Study

    Get PDF
    Whereas Operations Research has always paid much attention to optimization, practitioners judge the robustness of the 'optimum' solution to be of greater importance.Therefore this paper proposes a practical methodology that is a stagewise combination of the following four proven techniques: (1) discrete-event simulation, (2) heuristic optimization, (3) risk or uncertainty analysis, and (4) bootstrapping.This methodology is illustrated through a case study on production control systems.That study defines robustness as the system's capability to maintain a short-term service measure, in a variety of environments (scenarios).More precisely, this measure is the probability of the short-term fill rate remaining within a prespecified range.Besides satisfying this probabilistic constraint, the system should minimize long-term work-in-process.Actually, the case study compares four systems: Kanban, Conwip, Hybrid, and Generic.These systems are studied for a well-known example, namely a production line with four stations and a single product.The conclusion of this case study is that Hybrid is best when risk is not ignored, but otherwise Generic is best: risk considerations do make a difference.simulation;experimental design;statistical methods;optimization;risk analysis;bootstrap;production control;robustness

    Kanban devs modelling, simulation and verification

    Full text link
    Kanban Control Systems (KCS) have become a widely accepted form of inventory and production control. The creation of realistic Discrete Events Simulation (DES) models of KCS require specification of both information and material flow. There are several commercially available simulation packages that are able to model these systems although the use of an application specific modelling language provides means for rapid model development. A new Kanban specific simulation language as well as a high-speed execution engine is verified in this paper through the simulation of a single stage single part type production line. A single stage single part KCS is modelled with exhaustive enumeration of the decision variables of container sizes and number of Kanbans. Several performance measures were used; 95% Confidence Interval (CI) of container Flow Time (FT), mean line throughput as well as the Coefficient of Variance (CV) of FT and Cycle Time were used to determine the robustness of the control system.<br /

    Simulation study of a kanban-controlled production system

    Get PDF
    Just-In-Time (JIT) has become one of the most popular production control philosophies in the last three decades. JIT did not find acceptance in the American companies until after the oil crisis. To be more flexible and to adapt quickly to changes in the market, many American companies took to the recourse of JIT and have been extremely successful. JIT systems typically employ kanbans as a means of inventory control. A JIT system operating under kanban control is commonly termed as a pull system due to the way in which succeeding stages trigger production at preceding stages. Owing to this close dependence of stages on a production line, the performance of a kanban controlled JIT system is sensitive to various kinds of stochasticity.;It was the aim of this thesis to characterize such inventory systems under different conditions. In particular, the research focused on kanban controlled feeder lines. Various design and operational parameters like number of kanbans, number of stages, number of product types assembled and processing time variability were studied. Metrics such as time-in-system, throughput, kanban waiting time, utilization, stockout and work-in-process were used to measure the performance of the system. A simulation model was constructed to model the system and to carry out the various experiments conducted as part of this research. It was observed that time in system was significantly affected by de number of kanbans, number of product types and the level of processing time variability at the stages. The analysis of work-in-process indicated that it was affected by the number (of kanbans, number of stages, number of product types and the level of processing time variability at the stages. The factors affecting stockout were the number of kanbans and the number of products. Kanban waiting times were impacted by the number of kanbans, number of stages, number of product types and the level of processing time variability

    Evaluation of production control strategies for the co-ordination of work-authorisations and inventory management in lean supply chains

    Get PDF
    A decision support framework is proposed for assisting managers and executives to possibly utilise lean production control strategies to coordinate work authorisations and inventory management in supply chains. The framework allows decision makers to evaluate and compare the suitability of various strategies to their system especially when considering conflicting objectives, such as maximising customer service levels while minimising Work in Process (WIP) in a business environment distressed by variabilities and uncertainties in demand stemmed from customer power. Also, the framework provides decision guidance in selecting and testing optimal solutions of selected policies control parameters. The framework is demonstrated by application to a four-node serial supply-chain operating under three different pull-based supply chain strategies; namely CONWIP, Kanban, and Hybrid Kanban-CONWIP and exhibiting low, medium, and high variability in customer demand (i.e., coefficient of variation of 25%, 112.5%, and 200%). The framework consists of three phases; namely Modelling, Optimisation and Decision Support; and is applicable to both Simulation-Based and Metamodel-Based Optimisation. The Modelling phase includes conceptual modelling, discrete event simulation modelling and metamodels development. The Optimisation phase requires the application of multi-criteria optimisation methods to generate WIP-Service Level trade-off curves. The Curvature and Risk Analysis of the trade-off curves are utilised in the Decision Support phase to provide guidance to the decision maker in selecting and testing the best settings for the control parameters of the system. The inflection point of the curvature function indicates the point at which further increases in Service Level are only achievable by incurring an unacceptably higher cost in terms of average WIP. Risk analysis quantifies the risk associated with designing a supply chain system under specific environmental parameters. This research contributes an efficient framework that is applicable to solve real supply chain problems and better understanding of the potential impacts and expected effectiveness of different pull control mechanisms, and offers valuable insights on future research opportunities in this field to production and supply chain managers

    A multi-echelon supply chain model for strategic inventory assessment through the deployment of kanbans

    Get PDF
    Thesis (M. Eng. in Logistics)--Massachusetts Institute of Technology, Engineering Systems Division, 2008.Includes bibliographical references (leaves 100-102).As global competition in the manufacturing space grows, so do corporations' needs for sophisticated and optimized management systems to enable continuous flows of information and materials across the many tiers within their supply chains. With the complexities introduced by the variability in the demand for finished goods as well as by the variability in lead-time of transportation, procurement, production and administrative activities, corporations have turned to quantitative modeling of their supply chains to address these issues. Based on the data of a heavy machinery manufacturer headquartered in the US, this research introduces a robust model for the deployment of strategic inventory buffers across a multi-echelon manufacturing system. Specifically, this study establishes a replenishment policy for inventory using a multiple bin, or Kanban, system for each part number in the assembly of products from our sponsors tractor line. We employ a numerical simulation to evaluate and optimize the various inventory deployment scenarios. Utilizing several thousand runs of the simulation, we derive a generalized treatment for each part number based on an econometric function of the parameters associated with lead-time, order frequency, inventory value and order costing. The pilot for the simulation focuses on the parts data for three earthmoving products across eight echelons, but scales to n products across m echelons. Our results show that this approach predicted the optimal quantities of Kanbans for 95% of parts to a level of accuracy +/- 3 bins.by Philip J. Hodge and Joshua D. Lemaitre.M.Eng.in Logistic

    Application of lean scheduling and production control in non-repetitive manufacturing systems using intelligent agent decision support

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.Lean Manufacturing (LM) is widely accepted as a world-class manufacturing paradigm, its currency and superiority are manifested in numerous recent success stories. Most lean tools including Just-in-Time (JIT) were designed for repetitive serial production systems. This resulted in a substantial stream of research which dismissed a priori the suitability of LM for non-repetitive non-serial job-shops. The extension of LM into non-repetitive production systems is opposed on the basis of the sheer complexity of applying JIT pull production control in non-repetitive systems fabricating a high variety of products. However, the application of LM in job-shops is not unexplored. Studies proposing the extension of leanness into non-repetitive production systems have promoted the modification of pull control mechanisms or reconfiguration of job-shops into cellular manufacturing systems. This thesis sought to address the shortcomings of the aforementioned approaches. The contribution of this thesis to knowledge in the field of production and operations management is threefold: Firstly, a Multi-Agent System (MAS) is designed to directly apply pull production control to a good approximation of a real-life job-shop. The scale and complexity of the developed MAS prove that the application of pull production control in non-repetitive manufacturing systems is challenging, perplex and laborious. Secondly, the thesis examines three pull production control mechanisms namely, Kanban, Base Stock and Constant Work-in-Process (CONWIP) which it enhances so as to prevent system deadlocks, an issue largely unaddressed in the relevant literature. Having successfully tested the transferability of pull production control to non-repetitive manufacturing, the third contribution of this thesis is that it uses experimental and empirical data to examine the impact of pull production control on job-shop performance. The thesis identifies issues resulting from the application of pull control in job-shops which have implications for industry practice and concludes by outlining further research that can be undertaken in this direction
    • 

    corecore