318 research outputs found

    Polarity Control at Runtime:from Circuit Concept to Device Fabrication

    Get PDF
    Semiconductor device research for digital circuit design is currently facing increasing challenges to enhance miniaturization and performance. A huge economic push and the interest in novel applications are stimulating the development of new pathways to overcome physical limitations affecting conventional CMOS technology. Here, we propose a novel Schottky barrier device concept based on electrostatic polarity control. Specifically, this device can behave as p- or n-type by simply changing an electric input bias. This device combines More-than-Moore and Beyond CMOS elements to create an efficient technology with a viable path to Very Large Scale Integration (VLSI). This thesis proposes a device/circuit/architecture co-optimization methodology, where aspects of device technology to logic circuit and system design are considered. At device level, a full CMOS compatible fabrication process is presented. In particular, devices are demonstrated using vertically stacked, top-down fabricated silicon nanowires with gate-all-around electrode geometry. Source and drain contacts are implemented using nickel silicide to provide quasi-symmetric conduction of either electrons or holes, depending on the mode of operation. Electrical measurements confirm excellent performance, showing Ion/Ioff > 10^7 and subthreshold slopes approaching the thermal limit, SS ~ 60mV/dec (~ 63mV/dec) for n(p)-type operation in the same physical device. Moreover, the shown devices behave as p-type for a polarization bias (polarity gate voltage, Vpg) of 0V, and n-type for a Vpg = 1V, confirming their compatibility with multi-level static logic circuit design. At logic gate level, two- and four-transistor logic gates are fabricated and tested. In particular, the first fully functional, two-transistor XOR logic gate is demonstrated through electrical characterization, confirming that polarity control can enable more compact logic gate design with respect to conventional CMOS. Furthermore, we show for the first time fabricated four- transistors logic gates that can be reconfigured as NAND or XOR only depending on their external connectivity. In this case, logic gates with full swing output range are experimentally demonstrated. Finally, single device and mixed-mode TCAD simulation results show that lower Vth and more optimized polarization ranges can be expected in scaled devices implementing strain or high-k technologies. At circuit and system level, a full semi-custom logic circuit design tool flow was defined and configured. Using this flow, novel logic libraries based on standard cells or regular gate fabrics were compared with standard CMOS. In this respect, results were shown in comparison to CMOS, including a 40% normalized area-delay product reduction for the analyzed standard cell libraries, and improvements of over 2× in terms of normalized delay for regular Controlled Polarity (CP)-based cells in the context of Structured ASICs. These results, in turn, confirm the interest in further developing and optimizing CP devices, as promising candidates for future digital circuit technology

    Demonstration of monolithically integrated graphene interconnects for low-power CMOS applications

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 129-141).In recent years, interconnects have become an increasingly difficult design challenge as their relative performance has not improved at the same pace with transistor scaling. The specifications for complex features, clock frequency, supply current, and number of I/O resources have added even greater demands for interconnect performance. Furthermore, the resistivity of copper begins to degrade at smaller line widths due to increased scattering effects. Graphene has gathered much interest as an interconnect material due to its high mobility, high current carrying capacity, and high thermal conductivity. DC characterization of sub-50 nm graphene interconnects has been reported but very few studies exist on evaluating their performance when integrated with CMOS. Integrating graphene with CMOS is a critical step in establishing a path for graphene electronics. In this thesis, we characterize the performance of integrated graphene interconnects and demonstrate two prototype CMOS chips. A 0.35 prm CMOS chip implements an array of transmitter/receivers to analyze end-to-end data communication on graphene wires. Graphene sheets are synthesized by chemical vapor deposition, which are then subsequently transferred and patterned into narrow wires up to 1 mm in length. A low-swing signaling technique is applied, which results in a transmitter energy of 0.3-0.7 pJ/bit/mm, and a total energy of 2.4-5.2 pJ/bit/mm. We demonstrate a minimum voltage swing of 100 mV and bit error rates below 2x10-10. Despite the high sheet resistivity of graphene, integrated graphene links run at speeds up to 50 Mbps. Finally, a subthreshold FPGA was implemented in 0.18 pm CMOS. We demonstrate reliable signal routing on 4-layer graphene wires which replaces parts of the interconnect fabric. The FPGA test chip includes a 5x5 logic array and a TDC-based tester to monitor the delay of graphene wires. The graphene wires have 2.8x lower capacitance than the reference metal wires, resulting in up to 2.11x faster speeds and 1.54x lower interconnect energy when driven by a low-swing voltage of 0.4 V. This work presents the first graphene-based system application and demonstrates the potential of using low capacitance graphene wires for ultra-low power electronics.by Kyeong-Jae Lee.Ph.D

    Solid State Circuits Technologies

    Get PDF
    The evolution of solid-state circuit technology has a long history within a relatively short period of time. This technology has lead to the modern information society that connects us and tools, a large market, and many types of products and applications. The solid-state circuit technology continuously evolves via breakthroughs and improvements every year. This book is devoted to review and present novel approaches for some of the main issues involved in this exciting and vigorous technology. The book is composed of 22 chapters, written by authors coming from 30 different institutions located in 12 different countries throughout the Americas, Asia and Europe. Thus, reflecting the wide international contribution to the book. The broad range of subjects presented in the book offers a general overview of the main issues in modern solid-state circuit technology. Furthermore, the book offers an in depth analysis on specific subjects for specialists. We believe the book is of great scientific and educational value for many readers. I am profoundly indebted to the support provided by all of those involved in the work. First and foremost I would like to acknowledge and thank the authors who worked hard and generously agreed to share their results and knowledge. Second I would like to express my gratitude to the Intech team that invited me to edit the book and give me their full support and a fruitful experience while working together to combine this book

    Design of robust spin-transfer torque magnetic random access memories for ultralow power high performance on-chip cache applications

    Get PDF
    Spin-transfer torque magnetic random access memories (STT-MRAMs) based on magnetic tunnel junction (MTJ) has become the leading candidate for future universal memory technology due to its potential for low power, non-volatile, high speed and extremely good endurance. However, conflicting read and write requirements exist in STT-MRAM technology because the current path during read and write operations are the same. Read and write failures of STT-MRAMs are degraded further under process variations. The focus of this dissertation is to optimize the yield of STT- MRAMs under process variations by employing device-circuit-architecture co-design techniques. A devices-to-systems simulation framework was developed to evaluate the effectiveness of the techniques proposed in this dissertation. An optimization methodology for minimizing the failure probability of 1T-1MTJ STT-MRAM bit-cell by proper selection of bit-cell configuration and access transistor sizing is also proposed. A failure mitigation technique using assistsin 1T-1MTJ STT-MRAM bit-cells is also proposed and discussed. Assist techniques proposed in this dissertation to mitigate write failures either increase the amount of current available to switch the MTJ during write or decrease the required current to switch the MTJ. These techniques achieve significant reduction in bit-cell area and write power with minimal impact on bit-cell failure probability and read power. However, the proposed write assist techniques may be less effective in scaled STT-MRAM bit-cells. Furthermore, read failures need to be overcome and hence, read assist techniques are required. It has been experimentally demonstrated that a class of materials called multiferroics can enable manipulation of magnetization using electric fields via magnetoelectric effects. A read assist technique using an MTJ structure incorporating multiferroic materials is proposed and analyzed. It was found that it is very difficult to overcome the fundamental design issues with 1T-1MTJ STT-MRAM due to the two-terminal nature of the MTJ. Hence, multi-terminal MTJ structures consisting of complementary polarized pinned layers are proposed. Analysis of the proposed MTJ structures shows significant improvement in bit-cell failures. Finally, this dissertation explores two system-level applications enabled by STT-MRAMs, and shows that device-circuit-architecture co-design of STT-MRAMs is required to fully exploit its benefits

    BOOLEAN AND BRAIN-INSPIRED COMPUTING USING SPIN-TRANSFER TORQUE DEVICES

    Get PDF
    Several completely new approaches (such as spintronic, carbon nanotube, graphene, TFETs, etc.) to information processing and data storage technologies are emerging to address the time frame beyond current Complementary Metal-Oxide-Semiconductor (CMOS) roadmap. The high speed magnetization switching of a nano-magnet due to current induced spin-transfer torque (STT) have been demonstrated in recent experiments. Such STT devices can be explored in compact, low power memory and logic design. In order to truly leverage STT devices based computing, researchers require a re-think of circuit, architecture, and computing model, since the STT devices are unlikely to be drop-in replacements for CMOS. The potential of STT devices based computing will be best realized by considering new computing models that are inherently suited to the characteristics of STT devices, and new applications that are enabled by their unique capabilities, thereby attaining performance that CMOS cannot achieve. The goal of this research is to conduct synergistic exploration in architecture, circuit and device levels for Boolean and brain-inspired computing using nanoscale STT devices. Specifically, we first show that the non-volatile STT devices can be used in designing configurable Boolean logic blocks. We propose a spin-memristor threshold logic (SMTL) gate design, where memristive cross-bar array is used to perform current mode summation of binary inputs and the low power current mode spintronic threshold device carries out the energy efficient threshold operation. Next, for brain-inspired computing, we have exploited different spin-transfer torque device structures that can implement the hard-limiting and soft-limiting artificial neuron transfer functions respectively. We apply such STT based neuron (or ‘spin-neuron’) in various neural network architectures, such as hierarchical temporal memory and feed-forward neural network, for performing “human-like” cognitive computing, which show more than two orders of lower energy consumption compared to state of the art CMOS implementation. Finally, we show the dynamics of injection locked Spin Hall Effect Spin-Torque Oscillator (SHE-STO) cluster can be exploited as a robust multi-dimensional distance metric for associative computing, image/ video analysis, etc. Our simulation results show that the proposed system architecture with injection locked SHE-STOs and the associated CMOS interface circuits can be suitable for robust and energy efficient associative computing and pattern matching

    VLSI Design

    Get PDF
    This book provides some recent advances in design nanometer VLSI chips. The selected topics try to present some open problems and challenges with important topics ranging from design tools, new post-silicon devices, GPU-based parallel computing, emerging 3D integration, and antenna design. The book consists of two parts, with chapters such as: VLSI design for multi-sensor smart systems on a chip, Three-dimensional integrated circuits design for thousand-core processors, Parallel symbolic analysis of large analog circuits on GPU platforms, Algorithms for CAD tools VLSI design, A multilevel memetic algorithm for large SAT-encoded problems, etc

    Reliability-aware circuit design to mitigate impact of device defects and variability in emerging memristor-based applications

    Get PDF
    In the last decades, semiconductor industry has fostered a fast downscale in technology, propelling the large scale integration of CMOS-based systems. The benefits in miniaturization are numerous, highlighting faster switching frequency, lower voltage supply and higher device density. However, this aggressive scaling trend it has not been without challenges, such as leakage currents, yield reduction or the increase in the overall system power dissipation. New materials, changes in the device structures and new architectures are key to keep the miniaturization trend. It is foreseen that 2D integration will eventually come to an insurmountable physical and economic limit, in which new strategic directions are required, such as the development of new device structures, 3D architectures or heterogeneous systems that takes advantage of the best of different technologies, both the ones already consolidated as well as emergent ones that provide performance and efficiency improvements in applications. In this context, memristor arises as one of several candidates in the race to find suitable emergent devices. Memristor, a blend of the words memory and resistor, is a passive device postulated by Leon Chua in 1971. In contrast with the other fundamental passive elements, memristors have the distinctive feature of modifying their resistance according to the charge that passes through these devices, and remaining unaltered when charge no longer flows. Although when it appeared no physical device implementation was acknowledged, HP Labs claimed in 2008 the manufacture of the first real memristor. This milestone triggered an unexpectedly high research activity about memristors, both in searching new materials and structures as well as in potential applications. Nowadays, memristors are not only appreciated in memory systems by their nonvolatile storage properties, but in many other fields, such as digital computing, signal processing circuits, or non-conventional applications like neuromorphic computing or chaotic circuits. In spite of their promising features, memristors show a primarily downside: they show significant device variation and limited lifetime due degradation compared with other alternatives. This Thesis explores the challenges that memristor variation and malfunction imposes in potential applications. The main goal is to propose circuits and strategies that either avoid reliability problems or take advantage of them. Throughout a collection of scenarios in which reliability issues are present, their impact is studied by means of simulations. This thesis is contextualized and their objectives are exposed in Chapter 1. In Chapter 2 the memristor is introduced, at both conceptual and experimental levels, and different compact levels are presented to be later used in simulations. Chapter 3 deepens in the phenomena that causes the lack of reliability in memristors, and models that include these defects in simulations are provided. The rest of the Thesis covers different applications. Therefore, Chapter 4 exhibits nonvolatile memory systems, and specifically an online test method for faulty cells. Digital computing is presented in Chapter 5, where a solution for the yield reduction in logic operations due to memristors variability is proposed. Lastly, Chapter 6 reviews applications in the analog domain, and it focuses in the exploitation of results observed in faulty memristor-based interconnect mediums for chaotic systems synchronization purposes. Finally, the Thesis concludes in Chapter 7 along with perspectives about future work.Este trabajo desarrolla un novedoso dispositivo condensador basado en el uso de la nanotecnología. El dispositivo parte del concepto existente de metal-aislador-metal (MIM), pero en lugar de una capa aislante continua, se utilizan nanopartículas dieléctricas. Las nanopartículas son principalmente de óxido de silicio (sílice) y poliestireno (PS) y los valores de diámetro son 255nm y 295nm respectivamente. Las nanopartículas contribuyen a una alta relación superficie/volumen y están fácilmente disponibles a bajo costo. La tecnología de depósito desarrollada en este trabajo se basa en la técnica de electrospray, que es una tecnología de fabricación ascendente (bottom-up) que permite el procesamiento por lotes y logra un buen compromiso entre una gran superficie y un bajo tiempo de depósito. Con el objetivo de aumentar la superficie de depósito, la configuración de electrospray ha sido ajustada para permitir áreas de depósito de 1cm2 a 25cm2. El dispositivo fabricado, los llamados condensadores de metal aislante de nanopartículas (NP-MIM) ofrecen valores de capacidad más altos que un condensador convencional similar con una capa aislante continua. En el caso de los NP-MIM de sílice, se alcanza un factor de hasta 1000 de mejora de la capacidad, mientras que los NP-MIM de poliestireno exhibe una ganancia de capacidad en el rango de 11. Además, los NP-MIM de sílice muestran comportamientos capacitivos en específicos rangos de frecuencias que depende de la humedad y el grosor de la capa de nanopartículas, mientras que los NP-MIM de poliestireno siempre mantienen su comportamiento capacitivo. Los dispositivos fabricados se han caracterizado mediante medidas de microscopía electrónica de barrido (SEM) complementadas con perforaciones de haz de iones focalizados (FIB) para caracterizar la topografía de los NP-MIMs. Los dispositivos también se han caracterizado por medidas de espectroscopia de impedancia, a diferentes temperaturas y humedades. El origen de la capacitancia aumentada está asociado en parte a la humedad en las interfaces de las nanopartículas. Se ha desarrollado un modelo de un circuito basado en elementos distribuidos para ajustar y predecir el comportamiento eléctrico de los NP-MIMs. En resumen, esta tesis muestra el diseño, fabricación, caracterización y modelización de un nuevo y prometedor condensador nanopartículas metal-aislante-metal que puede abrir el camino al desarrollo de una nueva tecnología de supercondensadores MIM

    Reliability-aware circuit design to mitigate impact of device defects and variability in emerging memristor-based applications

    Get PDF
    In the last decades, semiconductor industry has fostered a fast downscale in technology, propelling the large scale integration of CMOS-based systems. The benefits in miniaturization are numerous, highlighting faster switching frequency, lower voltage supply and higher device density. However, this aggressive scaling trend it has not been without challenges, such as leakage currents, yield reduction or the increase in the overall system power dissipation. New materials, changes in the device structures and new architectures are key to keep the miniaturization trend. It is foreseen that 2D integration will eventually come to an insurmountable physical and economic limit, in which new strategic directions are required, such as the development of new device structures, 3D architectures or heterogeneous systems that takes advantage of the best of different technologies, both the ones already consolidated as well as emergent ones that provide performance and efficiency improvements in applications. In this context, memristor arises as one of several candidates in the race to find suitable emergent devices. Memristor, a blend of the words memory and resistor, is a passive device postulated by Leon Chua in 1971. In contrast with the other fundamental passive elements, memristors have the distinctive feature of modifying their resistance according to the charge that passes through these devices, and remaining unaltered when charge no longer flows. Although when it appeared no physical device implementation was acknowledged, HP Labs claimed in 2008 the manufacture of the first real memristor. This milestone triggered an unexpectedly high research activity about memristors, both in searching new materials and structures as well as in potential applications. Nowadays, memristors are not only appreciated in memory systems by their nonvolatile storage properties, but in many other fields, such as digital computing, signal processing circuits, or non-conventional applications like neuromorphic computing or chaotic circuits. In spite of their promising features, memristors show a primarily downside: they show significant device variation and limited lifetime due degradation compared with other alternatives. This Thesis explores the challenges that memristor variation and malfunction imposes in potential applications. The main goal is to propose circuits and strategies that either avoid reliability problems or take advantage of them. Throughout a collection of scenarios in which reliability issues are present, their impact is studied by means of simulations. This thesis is contextualized and their objectives are exposed in Chapter 1. In Chapter 2 the memristor is introduced, at both conceptual and experimental levels, and different compact levels are presented to be later used in simulations. Chapter 3 deepens in the phenomena that causes the lack of reliability in memristors, and models that include these defects in simulations are provided. The rest of the Thesis covers different applications. Therefore, Chapter 4 exhibits nonvolatile memory systems, and specifically an online test method for faulty cells. Digital computing is presented in Chapter 5, where a solution for the yield reduction in logic operations due to memristors variability is proposed. Lastly, Chapter 6 reviews applications in the analog domain, and it focuses in the exploitation of results observed in faulty memristor-based interconnect mediums for chaotic systems synchronization purposes. Finally, the Thesis concludes in Chapter 7 along with perspectives about future work.Este trabajo desarrolla un novedoso dispositivo condensador basado en el uso de la nanotecnología. El dispositivo parte del concepto existente de metal-aislador-metal (MIM), pero en lugar de una capa aislante continua, se utilizan nanopartículas dieléctricas. Las nanopartículas son principalmente de óxido de silicio (sílice) y poliestireno (PS) y los valores de diámetro son 255nm y 295nm respectivamente. Las nanopartículas contribuyen a una alta relación superficie/volumen y están fácilmente disponibles a bajo costo. La tecnología de depósito desarrollada en este trabajo se basa en la técnica de electrospray, que es una tecnología de fabricación ascendente (bottom-up) que permite el procesamiento por lotes y logra un buen compromiso entre una gran superficie y un bajo tiempo de depósito. Con el objetivo de aumentar la superficie de depósito, la configuración de electrospray ha sido ajustada para permitir áreas de depósito de 1cm2 a 25cm2. El dispositivo fabricado, los llamados condensadores de metal aislante de nanopartículas (NP-MIM) ofrecen valores de capacidad más altos que un condensador convencional similar con una capa aislante continua. En el caso de los NP-MIM de sílice, se alcanza un factor de hasta 1000 de mejora de la capacidad, mientras que los NP-MIM de poliestireno exhibe una ganancia de capacidad en el rango de 11. Además, los NP-MIM de sílice muestran comportamientos capacitivos en específicos rangos de frecuencias que depende de la humedad y el grosor de la capa de nanopartículas, mientras que los NP-MIM de poliestireno siempre mantienen su comportamiento capacitivo. Los dispositivos fabricados se han caracterizado mediante medidas de microscopía electrónica de barrido (SEM) complementadas con perforaciones de haz de iones focalizados (FIB) para caracterizar la topografía de los NP-MIMs. Los dispositivos también se han caracterizado por medidas de espectroscopia de impedancia, a diferentes temperaturas y humedades. El origen de la capacitancia aumentada está asociado en parte a la humedad en las interfaces de las nanopartículas. Se ha desarrollado un modelo de un circuito basado en elementos distribuidos para ajustar y predecir el comportamiento eléctrico de los NP-MIMs. En resumen, esta tesis muestra el diseño, fabricación, caracterización y modelización de un nuevo y prometedor condensador nanopartículas metal-aislante-metal que puede abrir el camino al desarrollo de una nueva tecnología de supercondensadores MIM

    Reliability-aware circuit design to mitigate impact of device defects and variability in emerging memristor-based applications

    Get PDF
    In the last decades, semiconductor industry has fostered a fast downscale in technology, propelling the large scale integration of CMOS-based systems. The benefits in miniaturization are numerous, highlighting faster switching frequency, lower voltage supply and higher device density. However, this aggressive scaling trend it has not been without challenges, such as leakage currents, yield reduction or the increase in the overall system power dissipation. New materials, changes in the device structures and new architectures are key to keep the miniaturization trend. It is foreseen that 2D integration will eventually come to an insurmountable physical and economic limit, in which new strategic directions are required, such as the development of new device structures, 3D architectures or heterogeneous systems that takes advantage of the best of different technologies, both the ones already consolidated as well as emergent ones that provide performance and efficiency improvements in applications. In this context, memristor arises as one of several candidates in the race to find suitable emergent devices. Memristor, a blend of the words memory and resistor, is a passive device postulated by Leon Chua in 1971. In contrast with the other fundamental passive elements, memristors have the distinctive feature of modifying their resistance according to the charge that passes through these devices, and remaining unaltered when charge no longer flows. Although when it appeared no physical device implementation was acknowledged, HP Labs claimed in 2008 the manufacture of the first real memristor. This milestone triggered an unexpectedly high research activity about memristors, both in searching new materials and structures as well as in potential applications. Nowadays, memristors are not only appreciated in memory systems by their nonvolatile storage properties, but in many other fields, such as digital computing, signal processing circuits, or non-conventional applications like neuromorphic computing or chaotic circuits. In spite of their promising features, memristors show a primarily downside: they show significant device variation and limited lifetime due degradation compared with other alternatives. This Thesis explores the challenges that memristor variation and malfunction imposes in potential applications. The main goal is to propose circuits and strategies that either avoid reliability problems or take advantage of them. Throughout a collection of scenarios in which reliability issues are present, their impact is studied by means of simulations. This thesis is contextualized and their objectives are exposed in Chapter 1. In Chapter 2 the memristor is introduced, at both conceptual and experimental levels, and different compact levels are presented to be later used in simulations. Chapter 3 deepens in the phenomena that causes the lack of reliability in memristors, and models that include these defects in simulations are provided. The rest of the Thesis covers different applications. Therefore, Chapter 4 exhibits nonvolatile memory systems, and specifically an online test method for faulty cells. Digital computing is presented in Chapter 5, where a solution for the yield reduction in logic operations due to memristors variability is proposed. Lastly, Chapter 6 reviews applications in the analog domain, and it focuses in the exploitation of results observed in faulty memristor-based interconnect mediums for chaotic systems synchronization purposes. Finally, the Thesis concludes in Chapter 7 along with perspectives about future work.Este trabajo desarrolla un novedoso dispositivo condensador basado en el uso de la nanotecnología. El dispositivo parte del concepto existente de metal-aislador-metal (MIM), pero en lugar de una capa aislante continua, se utilizan nanopartículas dieléctricas. Las nanopartículas son principalmente de óxido de silicio (sílice) y poliestireno (PS) y los valores de diámetro son 255nm y 295nm respectivamente. Las nanopartículas contribuyen a una alta relación superficie/volumen y están fácilmente disponibles a bajo costo. La tecnología de depósito desarrollada en este trabajo se basa en la técnica de electrospray, que es una tecnología de fabricación ascendente (bottom-up) que permite el procesamiento por lotes y logra un buen compromiso entre una gran superficie y un bajo tiempo de depósito. Con el objetivo de aumentar la superficie de depósito, la configuración de electrospray ha sido ajustada para permitir áreas de depósito de 1cm2 a 25cm2. El dispositivo fabricado, los llamados condensadores de metal aislante de nanopartículas (NP-MIM) ofrecen valores de capacidad más altos que un condensador convencional similar con una capa aislante continua. En el caso de los NP-MIM de sílice, se alcanza un factor de hasta 1000 de mejora de la capacidad, mientras que los NP-MIM de poliestireno exhibe una ganancia de capacidad en el rango de 11. Además, los NP-MIM de sílice muestran comportamientos capacitivos en específicos rangos de frecuencias que depende de la humedad y el grosor de la capa de nanopartículas, mientras que los NP-MIM de poliestireno siempre mantienen su comportamiento capacitivo. Los dispositivos fabricados se han caracterizado mediante medidas de microscopía electrónica de barrido (SEM) complementadas con perforaciones de haz de iones focalizados (FIB) para caracterizar la topografía de los NP-MIMs. Los dispositivos también se han caracterizado por medidas de espectroscopia de impedancia, a diferentes temperaturas y humedades. El origen de la capacitancia aumentada está asociado en parte a la humedad en las interfaces de las nanopartículas. Se ha desarrollado un modelo de un circuito basado en elementos distribuidos para ajustar y predecir el comportamiento eléctrico de los NP-MIMs. En resumen, esta tesis muestra el diseño, fabricación, caracterización y modelización de un nuevo y prometedor condensador nanopartículas metal-aislante-metal que puede abrir el camino al desarrollo de una nueva tecnología de supercondensadores MIM.Postprint (published version

    MICROELECTRONICS PACKAGING TECHNOLOGY ROADMAPS, ASSEMBLY RELIABILITY, AND PROGNOSTICS

    Get PDF
    This paper reviews the industry roadmaps on commercial-off-the shelf (COTS) microelectronics packaging technologies covering the current trends toward further reducing size and increasing functionality. Due tothe breadth of work being performed in this field, this paper presents only a number of key packaging technologies. The topics for each category were down-selected by reviewing reports of industry roadmaps including the International Technology Roadmap for Semiconductor (ITRS) and by surveying publications of the International Electronics Manufacturing Initiative (iNEMI) and the roadmap of association connecting electronics industry (IPC). The paper also summarizes the findings of numerous articles and websites that allotted to the emerging and trends in microelectronics packaging technologies. A brief discussion was presented on packaging hierarchy from die to package and to system levels. Key elements of reliability for packaging assemblies were presented followed by reliabilty definition from a probablistic failure perspective. An example was present for showing conventional reliability approach using Monte Carlo simulation results for a number of plastic ball grid array (PBGA). The simulation results were compared to experimental thermal cycle test data. Prognostic health monitoring (PHM) methods, a growing field for microelectronics packaging technologies, were briefly discussed. The artificial neural network (ANN), a data-driven PHM, was discussed in details. Finally, it presented inter- and extra-polations using ANN simulation for thermal cycle test data of PBGA and ceramic BGA (CBGA) assemblies
    corecore