443 research outputs found

    Downtime Estimation of Buildings and Infrastructures Using Fuzzy Logic

    Get PDF
    Extreme natural events (e.g. earthquakes, floods, fire) are the major sources of threat to society and infrastructure. Communities that are able to absorb the impacts, recover quickly after disasters, and adapt to adverse events are fairly resilient communities. Economic and public health consequences from natural disasters have increased over time and motivated discussion of a new resilience management worldwide. The key parameter to estimate the resilience of buildings and infrastructures is the downtime (DT). Several strategies have been investigated to reduce disaster risk and evaluate the recovery time of buildings and infrastructures following dangerous events. However, the estimation of the DT is still challenging due to the uncertainty and vagueness of the data available. This paper introduces a method to predict the DT of buildings and infrastructures following earthquakes through a Fuzzy Logic hierarchical scheme. The use of expert-based systems can be helpful to deal with uncertainties, randomness, and limited data availability in the context of risk analysis and management. Fuzzy theory describes the behavior of a complex system through linguistic variables and it is based on deterministic functions. Two different DT models are introduced in this work for residential buildings and infrastructures, since different are the input parameters involved in the estimation process. In the first model, the DT can be divided into three main components: downtime due to the actual damage (DT1); downtime caused by irrational delays (DT2); and downtime due to utilities disruption (DT3). DT1 is evaluated by relating the building damageability to given repair times of the building’s components. A rapid visual screening survey is filled out by an expert to acquire information about the analyzed building. Then, fuzzy logic is implemented to determine the building vulnerability, which is combined with a given earthquake intensity to obtain the building damageability. DT2 and DT3 are estimated using the REDITM Guidelines. DT2 considers irrational components through a specific sequence, which defines the order of components repair, while DT3 depends on the site seismic hazard and on the infrastructure vulnerability. The downtime of the building is finally estimated by combining the three components above, identifying three recovery states: re-occupancy, functional recovery, and full recovery. For estimating the recovery time of buried infrastructures, 31 indicators have been selected from previous publications and studies referring to programs and policies intending to reduce risk and increase recovery. The DT model is designed by aggregating four downtime indices: exposed infrastructure, earthquake intensity, human resources, and infrastructure type. The collected information on the potentially damaged lifelines are aggregated into a fuzzy hierarchical scheme and combined to obtain the DT. The methodology can be used to effectively support decision-makers in managing and minimizing the impacts of earthquakes and to recover damaged infrastructure promptly

    Energy performance forecasting of residential buildings using fuzzy approaches

    Get PDF
    The energy consumption used for domestic purposes in Europe is, to a considerable extent, due to heating and cooling. This energy is produced mostly by burning fossil fuels, which has a high negative environmental impact. The characteristics of a building are an important factor to determine the necessities of heating and cooling loads. Therefore, the study of the relevant characteristics of the buildings, regarding the heating and cooling needed to maintain comfortable indoor air conditions, could be very useful in order to design and construct energy-efficient buildings. In previous studies, different machine-learning approaches have been used to predict heating and cooling loads from the set of variables: relative compactness, surface area, wall area, roof area, overall height, orientation, glazing area and glazing area distribution. However, none of these methods are based on fuzzy logic. In this research, we study two fuzzy logic approaches, i.e., fuzzy inductive reasoning (FIR) and adaptive neuro fuzzy inference system (ANFIS), to deal with the same problem. Fuzzy approaches obtain very good results, outperforming all the methods described in previous studies except one. In this work, we also study the feature selection process of FIR methodology as a pre-processing tool to select the more relevant variables before the use of any predictive modelling methodology. It is proven that FIR feature selection provides interesting insights into the main building variables causally related to heating and cooling loads. This allows better decision making and design strategies, since accurate cooling and heating load estimations and correct identification of parameters that affect building energy demands are of high importance to optimize building designs and equipment specifications.Peer ReviewedPostprint (published version

    Granular fuzzy models: a study in knowledge management in fuzzy modeling

    Get PDF
    AbstractIn system modeling, knowledge management comes vividly into the picture when dealing with a collection of individual models. These models being considered as sources of knowledge, are engaged in some collective pursuits of a collaborative development to establish modeling outcomes of global character. The result comes in the form of a so-called granular fuzzy model, which directly reflects upon and quantifies the diversity of the available sources of knowledge (local models) involved in knowledge management. In this study, several detailed algorithmic schemes are presented along with related computational aspects associated with Granular Computing. It is also shown how the construction of information granules completed through the use of the principle of justifiable granularity becomes advantageous in the realization of granular fuzzy models and a quantification of the quality (specificity) of the results of modeling. We focus on the design of granular fuzzy models considering that the locally available models are those fuzzy rule-based. It is shown that the model quantified in terms of two conflicting criteria, that is (a) a coverage criterion expressing to which extent the resulting information granules “cover” include data and (b) specificity criterion articulating how detailed (specific) the obtained information granules are. The overall quality of the granular model is also assessed by determining an area under curve (AUC) where the curve is formed in the coverage-specificity coordinates. Numeric results are discussed with intent of displaying the most essential features of the proposed methodology and algorithmic developments

    Perpetual Learning Framework based on Type-2 Fuzzy Logic System for a Complex Manufacturing Process

    Get PDF
    This paper introduces a perpetual type-2 Neuro-Fuzzy modelling structure for continuous learning and its application to the complex thermo-mechanical metal process of steel Friction Stir Welding (FSW). The ‘perpetual’ property refers to the capability of the proposed system to continuously learn from new process data, in an incremental learning fashion. This is particularly important in industrial/manufacturing processes, as it eliminates the need to retrain the model in the presence of new data, or in the case of any process drift. The proposed structure evolves through incremental, hybrid (supervised/unsupervised) learning, and accommodates new sample data in a continuous fashion. The human-like information capture paradigm of granular computing is used along with an interval type-2 neural-fuzzy system to develop a modelling structure that is tolerant to the uncertainty in the manufacturing data (common challenge in industrial/manufacturing data). The proposed method relies on the creation of new fuzzy rules which are updated and optimised during the incremental learning process. An iterative pruning strategy in the model is then employed to remove any redundant rules, as a result of the incremental learning process. The rule growing/pruning strategy is used to guarantee that the proposed structure can be used in a perpetual learning mode. It is demonstrated that the proposed structure can effectively learn complex dynamics of input-output data in an adaptive way and maintain good predictive performance in the metal processing case study of steel FSW using real manufacturing dat

    Data mining in soft computing framework: a survey

    Get PDF
    The present article provides a survey of the available literature on data mining using soft computing. A categorization has been provided based on the different soft computing tools and their hybridizations used, the data mining function implemented, and the preference criterion selected by the model. The utility of the different soft computing methodologies is highlighted. Generally fuzzy sets are suitable for handling the issues related to understandability of patterns, incomplete/noisy data, mixed media information and human interaction, and can provide approximate solutions faster. Neural networks are nonparametric, robust, and exhibit good learning and generalization capabilities in data-rich environments. Genetic algorithms provide efficient search algorithms to select a model, from mixed media data, based on some preference criterion/objective function. Rough sets are suitable for handling different types of uncertainty in data. Some challenges to data mining and the application of soft computing methodologies are indicated. An extensive bibliography is also included

    Fine-tuning the fuzziness of strong fuzzy partitions through PSO

    Get PDF
    We study the influence of fuzziness of trapezoidal fuzzy sets in the strong fuzzy partitions (SFPs) that constitute the database of a fuzzy rule-based classifier. To this end, we develop a particular representation of the trapezoidal fuzzy sets that is based on the concept of cuts, which are the cross-points of fuzzy sets in a SFP and fix the position of the fuzzy sets in the Universe of Discourse. In this way, it is possible to isolate the parameters that characterize the fuzziness of the fuzzy sets, which are subject to fine-tuning through particle swarm optimization (PSO). In this paper, we propose a formulation of the parameter space that enables the exploration of all possible levels of fuzziness in a SFP. The experimental results show that the impact of fuzziness is strongly dependent on the defuzzification procedure used in fuzzy rule-based classifiers. Fuzziness has little influence in the case of winner-takes-all defuzzification, while it is more influential in weighted sum defuzzification, which however may pose some interpretation problems

    A review of applications of fuzzy sets to safety and reliability engineering

    Get PDF
    Safety and reliability are rigorously assessed during the design of dependable systems. Probabilistic risk assessment (PRA) processes are comprehensive, structured and logical methods widely used for this purpose. PRA approaches include, but not limited to Fault Tree Analysis (FTA), Failure Mode and Effects Analysis (FMEA), and Event Tree Analysis (ETA). In conventional PRA, failure data about components is required for the purposes of quantitative analysis. In practice, it is not always possible to fully obtain this data due to unavailability of primary observations and consequent scarcity of statistical data about the failure of components. To handle such situations, fuzzy set theory has been successfully used in novel PRA approaches for safety and reliability evaluation under conditions of uncertainty. This paper presents a review of fuzzy set theory based methodologies applied to safety and reliability engineering, which include fuzzy FTA, fuzzy FMEA, fuzzy ETA, fuzzy Bayesian networks, fuzzy Markov chains, and fuzzy Petri nets. Firstly, we describe relevant fundamentals of fuzzy set theory and then we review applications of fuzzy set theory to system safety and reliability analysis. The review shows the context in which each technique may be more appropriate and highlights the overall potential usefulness of fuzzy set theory in addressing uncertainty in safety and reliability engineering
    corecore