336,673 research outputs found

    Towards Collaborative Conceptual Exploration

    Full text link
    In domains with high knowledge distribution a natural objective is to create principle foundations for collaborative interactive learning environments. We present a first mathematical characterization of a collaborative learning group, a consortium, based on closure systems of attribute sets and the well-known attribute exploration algorithm from formal concept analysis. To this end, we introduce (weak) local experts for subdomains of a given knowledge domain. These entities are able to refute and potentially accept a given (implicational) query for some closure system that is a restriction of the whole domain. On this we build up a consortial expert and show first insights about the ability of such an expert to answer queries. Furthermore, we depict techniques on how to cope with falsely accepted implications and on combining counterexamples. Using notions from combinatorial design theory we further expand those insights as far as providing first results on the decidability problem if a given consortium is able to explore some target domain. Applications in conceptual knowledge acquisition as well as in collaborative interactive ontology learning are at hand.Comment: 15 pages, 2 figure

    Designing Interactive Narratives for the Fashion System. MOOC and blended learning in a transdisciplinary design module

    Full text link
    [EN] From distributed interactive narratives to games and playful systems, complex interactive projects challenge the fashion ecosystem introducing new possibilities that require innovative and transdisciplinary competencies to be adequately tackled. However, to properly deal with digital media, designers need to master their logic, potentialities, and implications. Therefore the urgency to include such knowledge in building, reframing, and implementing the curricula and design education of today's and tomorrow's fashion designers. This considers the complexity of getting acquainted and implementing vocabulary, design methodologies and practices from other fields of studies. This paper presents the lessons learnt from the first application of the MOOC “Data Science, Visualization and Interactive Narratives for CCIs” to an intensive design module in the Design for the Fashion System. Attention is posed on how it was included in a Blended Learning context to meet the scope and answer previously identified criticalities as providing knowledge from neighbouring fields, and to what extent it succeeded.Mariani, I.; Vandi, A. (2021). Designing Interactive Narratives for the Fashion System. MOOC and blended learning in a transdisciplinary design module. En 7th International Conference on Higher Education Advances (HEAd'21). Editorial Universitat Politècnica de València. 933-940. https://doi.org/10.4995/HEAd21.2021.12958OCS93394

    Interactive Machine Learning for User-Innovation Toolkits – An Action Design Research approach

    Get PDF
    Machine learning offers great potential to developers and end users in the creative industries. However, to better support creative software developers' needs and empower them as machine learning users and innovators, the usability of and developer experience with machine learning tools must be considered and better understood. This thesis asks the following research questions: How can we apply a user-centred approach to the design of developer tools for rapid prototyping with Interactive Machine Learning? In what ways can we design better developer tools to accelerate and broaden innovation with machine learning? This thesis presents a three-year longitudinal action research study that I undertook within a multi-institutional consortium leading the EU H2020 -funded Innovation Action RAPID-MIX. The scope of the research presented here was the application of a user-centred approach to the design and evaluation of developer tools for rapid prototyping and product development with machine learning. This thesis presents my work in collaboration with other members of RAPID-MIX, including design and deployment of a user-centred methodology for the project, interventions for gathering requirements with RAPID-MIX consortium stakeholders and end users, and prototyping, development and evaluation of a software development toolkit for interactive machine learning. This thesis contributes with new understanding about the consequences and implications of a user-centred approach to the design and evaluation of developer tools for rapid prototyping of interactive machine learning systems. This includes 1) new understanding about the goals, needs, expectations, and challenges facing creative machine-learning non-expert developers and 2) an evaluation of the usability and design trade-offs of a toolkit for rapid prototyping with interactive machine learning. This thesis also contributes with 3) a methods framework of User-Centred Design Actions for harmonising User-Centred Design with Action Research and supporting the collaboration between action researchers and practitioners working in rapid innovation actions, and 4) recommendations for applying Action Research and User-Centred Design in similar contexts and scale

    A study of search intermediary working notes: implications for IR system design

    Get PDF
    This paper reports findings from an exploratory study investigating working notes created during encoding and external storage (EES) processes, by human search intermediates using a Boolean information retrieval (JR) system. EES processes have been an important area of research in educational contexts where students create and use notes to facilitate learning. In the context of interactive IR, encoding can be conceptualized as the process of creating working notes to help in the understanding and translating a user's information problem into a search strategy suitable for use with an IR system. External storage is the process of using working notes to facilitate interaction with IR systems. Analysis of 221 sets of working notes created by human search intermediaries revealed extensive use of EES processes and the creation of working notes of textual, numerical and graphical entities. Nearly 70% of recorded working notes were textual/numerical entities, nearly 30% were graphical entities and 0.73% were indiscernible. Segmentation devices were also used in 48% of the working notes. The creation of working notes during EES processes was a fundamental element within the mediated, interactive IR process. Implications for the design of IR interfaces to support users' EES processes and further research is discussed

    Design Analytics Dashboards to Support Students and Instructors

    Get PDF
    Design coursework is iterative and continuously-evolving. Separation of digital tools used in design courses disaffects instructors’ and students’ iterative process experiences. As technology becomes increasingly integrated into design education, new opportunities arise for supporting the iterative, living process of design. These opportunities include providing on-demand, automatically computed insights to instructors, and facilitating instructor and student communication of feedback. I present a system that integrates support for design ideation with a learning analytics dashboard. The system enables instructors gain insights into a student's work across multiple dimensions. Instructors can view design work in the same environment in which students create it, which allows them to provide assessment and feedback in-context. I conducted semi-structured interviews, and recorded interaction logs over the course of an academic year to understand users' experiences. My research contributes to our understanding of how to present interactive, on-demand insights to instructors, as well as how to facilitate communication in an iterative process between instructors and students. Findings indicate benefits when systems enable instructors to contextualize creative work with assessment by integrating support for ideation with a learning analytics dashboard. Instructors are better able to track students and their work. Students are supported in reflecting on the relationship between assignments, and contextualizing instructor feedback with their work. We derive implications for contextualizing design with feedback to support creativity, learning, and teaching

    Authentic learning in interactive multimedia environments

    Get PDF
    The instructional technology community is in the midst of a philosophical shift from a behaviourist to a constructivist framework, a move that may begin to address the growing rift between formal school learning and real-life learning. One theory of learning which has the capacity to promote authentic learning is that of situated learning. The purpose of the study was to investigate the way students learn from an interactive multimedia package and learning environment based on a situated learning model. To do this, it was necessary to identify the critical characteristics of a situated learning model based on the extensive literature on the subject. An interactive multimedia learning environment for university level students was then designed according to these characteristics of a situated learning model. The learning environment comprised an interactive multimedia program on assessment in mathematics, together with recommended implementation conditions in the classroom. Specifically, the research sought to investigate the way preservice teachers used interactive multimedia based on a situated learning model, how they responded to the critical elements of the situated learning environment, what types of higher-order thinking they used as they worked with the program, and whether learning transferred to their professional teaching practice in schools. The research took the form of an interpretive, qualitative study. The major methods of data collection were videotaping of preservice teachers using the interactive multimedia program, observation, and interviews with both the preservice teachers and their supervising teachers in schools. Data was analysed using techniques of qualitative analysis recommended by Eisner (1991) and Miles and Huberman (1994). Findings suggest that the use of the situated learning model was a successful alternative to the system models frequently used for the development of interactive multimedia, and one that enabled students to freely navigate a complex resource. When implemented with all the characteristics defined in the model, it appeared to provide an effective framework for the design of an environment for the acquisition of advanced know ledge. Students used a substantial amount of higher-order thinking, relatively little social and lower order talk, and a moderate amount of procedural talk as they worked with the assessment program. While on their professional practice in schools, the students used a variety of assessment techniques to assess children\u27s learning, and they were able to speak knowledgably and confidently about the issue of assessment, supporting the view that they had incorporated their learning deeply into their cognitive structures. According to the beliefs of the students themselves, the multimedia program appeared to influence the types of strategies they employed and their thinking about assessment as they taught mathematics and other classes during their professional practice. The major implication of the research is that new learning theory can inform the instructional design of interactive multimedia. For implementation in contexts of advanced knowledge acquisition, an instructional design model based on situated learning is an effective substitute for the traditional instructional systems model. Further implications are that excessive intervention by the developer in providing interaction between the program and the learner is not necessary, and that multimedia materials are best designed and implemented socially, not as independent instruction for individual learners. At the conclusion of the thesis, extensive recommendations for further research, both systemic and analytic, are provided

    Responsive Building Envelope for Grid-Interactive Efficient Buildings – Thermal Performance and Control

    Get PDF
    The building sector accounts for 30% of total energy consumption worldwide. Responsive building envelopes (or RBEs) are one of the approaches to achieving net-zero energy and grid-interactive efficient buildings. However, research and development of RBEs are still in the early stages of technologies, simulation, control, and design. The control strategies in prior studies did not fully explore the potential of RBEs or they obtained good performance with high design and deployment costs. A low-cost strategy that does not require knowledge of complex systems is needed, while no studies have investigated online implementations of model-free control approaches for RBEs. To address these challenges, this dissertation describes a multidisciplinary study of the modeling, control, and design of RBEs, to understand mechanisms governing their dynamic properties and synthesis rules of multiple technologies through simulation analyses. Widely applicable mathematical models are developed that can be easily extended for multiple RBE types with validation. Computational frameworks (or co-simulation testbeds) that flexibly integrate multiple control methods and building simulation models are established with higher computation efficiency than that using commercial software during offline training. To overcome the limitations of the control strategies (e.g., rule-based control and MPC) in prior research, a novel easy-to-implement yet flexible ‘demand-based’ control strategy, and model-free online control strategies using deep reinforced learning are proposed for RBEs composed of active insulation systems (AISs). Both the physics-derived and model-free control strategies fully leverage the advantages of AISs and provide higher energy savings and thermal comfort improvement over traditional temperature-based control methods in prior research and demand-based control. The case studies of RBEs that integrate AISs and high thermal mass or self-adaptive/active modules (e.g., evaporative cooling techniques and dynamic glazing/shading) demonstrate the superior performance of AISs in regulating thermal energy transfer to offset AC demands during the synergy. Moreover, the controller design and training implications are elaborated. The applicability assessment of promising RBE configurations is presented along with design implications based on building energy analyses in multiple scenarios. The design and control implications represent an interactive and holistic way to operate RBEs allowing energy and thermal comfort performances to be tuned for maximum efficiency

    Information systems for interactive learning: Design perspective

    Get PDF
    This paper aims to present and discuss educational issues and relevant research to universities and colleges in the Arabian Gulf Region. This include cultural, students’ learning preferences and the use of information and communication technology. It particularly focuses on interactive learning through the consideration of learning styles. It explores the sequential-global learning styles profile of undergraduate students as part of a continuous research in Information Systems design with a particular focus on the design of Interactive Learning Systems (ILSs). A study to examine the learning style profile of undergraduate students in a cohort of Management Information Systems at a UAE university has been conducted, and a discussion and recommendations on how these findings can be reflected on the design of ILSs are provided
    • …
    corecore