639 research outputs found

    Voltage controlled oscillator for mm-wave radio systems

    Get PDF
    Abstract. The advancement in silicon technology has accelerated the development of integrated millimeter-wave transceiver systems operating up to 100 GHz with sophisticated functionality at a reduced consumer cost. Due to the progress in the field of signal processing, frequency modulated continuous wave (FMCW) radar has become common in recent years. A high-performance local oscillator (LO) is required to generate reference signals utilized in these millimeter-wave radar transceivers. To accomplish this, novel design techniques in fundamental voltage controlled oscillators (VCO) are necessary to achieve low phase noise, wide frequency tuning range, and good power efficiency. Although integrated VCOs have been studied for decades, as we move higher in the radio frequency spectrum, there are new trade-offs in the performance parameters that require further characterization. The work described in this thesis aims to design a fully integrated fundamental VCO targeting to 150 GHz, i.e., D-Band. The purpose is to observe and analyze the design limitations at these high frequencies and their corresponding trade-offs during the design procedure. The topology selected for this study is the cross-coupled LC tank VCO. For the study, two design topologies were considered: a conventional cross-coupled LC tank VCO and an inductive divider cross-coupled LC tank VCO. The conventional LC tank VCO yields better performance in terms of phase noise and tuning range. It is observed that the VCO is highly sensitive to parasitic contributions by the transistors, and the layout interconnects, thus limiting the targeted frequency range. The dimensions of the LC tank and the transistors are selected carefully. Moreover, the VCO performance is limited by the low Q factor of the LC tank governed by the varactor that is degrading the phase noise performance and the tuning range, respectively. The output buffer loaded capacitance and the core power consumption of the VCO are optimized. The layout is drawn carefully with strategies to minimize the parasitic effects. Considering all the design challenges, a 126 GHz VCO with a tuning range of 3.9% is designed. It achieves FOMT (Figure-of-merit) of -172 dBc/Hz, and phase noise of -99.14 dBc/Hz at 10 MHz offset, Core power consumption is 8.9 mW from a 1.2 V supply. Just falling short of the targeted frequency, the design is suitable for FMCW radar applications for future technologies. The design was done using Silicon-on-Insulator (SOI) CMOS technology

    Concepts and methods in optimization of integrated LC VCOs

    Get PDF
    Underlying physical mechanisms controlling the noise properties of oscillators are studied. This treatment shows the importance of inductance selection for oscillator noise optimization. A design strategy centered around an inductance selection scheme is executed using a practical graphical optimization method to optimize phase noise subject to design constraints such as power dissipation, tank amplitude, tuning range, startup condition, and diameters of spiral inductors. The optimization technique is demonstrated through a design example, leading to a 2.4-GHz fully integrated, LC voltage-controlled oscillator (VCO) implemented using 0.35-ÎĽm MOS transistors. The measured phase-noise values are -121, -117, and -115 dBc/Hz at 600-kHz offset from 1.91, 2.03, and 2.60-GHz carriers, respectively. The VCO dissipates 4 mA from a 2.5-V supply voltage. The inversion mode MOSCAP tuning is used to achieve 26% of tuning range. Two figures of merit for performance comparison of various oscillators are introduced and used to compare this work to previously reported results

    Design and Analysis of a Discrete, PCB-Level Low-Power, Microwave Cross-Coupled Differential LC Voltage-Controlled Oscillator

    Get PDF
    Radio Frequency (RF) and Microwave devices are typically implemented in Integrated Circuit (IC) form to minimize parasitics, increase precision and tolerances, and minimize size. Although IC fabrication for students and independent engineers is cost-prohibitive, an abundance of low-cost, easily accessible printed circuit board (PCB) and electronic component manufacturers allows affordable PCB fabrication. While nearly all microwave voltage-controlled oscillator (VCO) designs are IC-based, this study presents a discrete PCB-level cross-coupled, differential LC VCO to demonstrate this more affordable and accessible approach. This thesis presents a 65 mW, discrete component VCO PCB with industry-comparable RF performance. A phase noise of -103.7 dBc/Hz is simulated at a 100 kHz offset from a 4.05 GHz carrier. This VCO achieves a 532 MHz (13.25%) tuning bandwidth. A figure of merit, FOMP, [1] value of -177.7 dB (includes phase noise and power consumption) is calculated at 4.05 GHz. This surpasses the performance of an industry standard VCO (HMC430LPx, Analog Devices), -176.5 dB, and four other commercially available VCOs. Furthermore, this study presents novel discrete design implementations to minimize both power consumption and capacitive loading effects, while optimizing phase noise. Finally, this project serves as a reference for analyzing and implementing low-level, complex RF and Microwave circuits on a PCB accessible to all students and independent engineers

    Design and Implementation of A 6-GHz Array of Four Differential VCOs Coupled Through a Resistive Network

    No full text
    International audienceThis paper presents the design and the implementation of a fully monolithic coupled-oscillator array, operating at 6 GHz with close to zero coupling phase, in 0.25 μm BICMOS SiGe process. This array is made of four LC-NMOS differential VCOs coupled through a resistor. The single LC-NMOS VCO structure is designed and optimized in terms of phase noise with a graphical optimization approach while satisfying design constraints. At 2.5 V power supply voltage, and a power dissipation of only 125 mW, the coupled oscillators array features a simulated phase noise of -127.3 dBc/Hz at 1 MHz frequency offset from a 6 GHz carrier, giving a simulated phase progression that was continuously variable over the range -64° < Δphi <64 ° and -116° < Δphi < 116°. This constant phase progression can be established by slightly detuning the peripheral array elements, while maintaining mutual synchronization

    Ultra Wideband Oscillators

    Get PDF

    12???14.5 GHZ DIGITALLY CONTROLLED OSCILLATOR USING A HIGH-RESOLUTION DELTA-SIGMA DIGITAL-TO-ANALOG CONVERTER

    Get PDF
    Department of Electrical EngineeringThis thesis focuses on the design of digitally-controlled oscillators (DCO) for ultra-low-jitter digital phase-locked-loops (PLL), which requires very fine frequency resolution and low phase noise performance. Before going details of the design, fundamentals of the digital-to-analog converter (DAC), delta-sigma modulator (DSM), LC voltage-controlled oscillator (VCO) are discussed in Chapters 2, 3, and 4 respectively. Detailly, Chapter 2 begins with the basic operations of the digital-toanalog converters. Plus, several types of DACs and their properties are discussed. For instance, resistorbased DAC or current source-based DAC. In Chapter 3, the backgrounds of DSMs are presented. The reason why DSMs are indispensable components in fractional number generation is presented. The meaning of the randomization and noise shaping in DSMs is discussed then high-order noise shaping DSMs are explained as well. Chapter 4, starts with the LC tanks. Integrated passive components are introduced such as spiral inductors, metal-insulator-metal (MIM) capacitors, and metal-oxide-metal (MOM) capacitors. The start-up of the oscillators also explained by using two approaches, the Barkhausen criterion and the negative resistance theory. Then the pros and cons of the CMOS and NMOS type topologies are stated. Finally, the phase noise in oscillators is analyzed by using the Leeson???s equation and the impulse-sensitivity function theory. In chapter 5, the detailed designs of the prototype DCO are presented. The designed DCO consists of 2nd order DSM, string resistor-based DAC, and CMOS-type LC VCO. The frequency resolutions of the proportional and integral path are different but the structures are identical. For the high-performance oscillator, iterative design is required. In the measurements, the designed DCO achieved 17 and 18 bit of frequency resolution in the proportional and integral path respectively, 12-14.5GHz of the frequency tuning range, 50 and 500MHz/V of KVCO for the main and auxiliary loop respectively, and -184.5 dB of figure of merit (FOM). The power consumption is 5.5mW and the prototype was fabricated in TSMC 65nm CMOS process.clos

    Graphical method for the phase noise optimization applied to a 6-GHz fully integrated NMOS differential LC VCO

    No full text
    International audienceThis paper describes the design and the optimization in terms of phase noise of a fully integrated NMOS Voltage Controlled Oscillator (VCO) using a 0.25 ÎĽm BICMOS SiGe process. A three-dimensional phase noise analysis diagram and a graphical optimization approach is presented to optimize the phase noise of the VCO while satisfying design constraints such as tank amplitude, power dissipation, tuning range and start up conditions. At 2.5 V power supply voltage, the optimized VCO features a simulated phase noise of -118 dBc/Hz at 1 MHz frequency offset from a 6.12 GHz carrier. The VCO is tuned from 6.1 GHz to 7.9 GHz with a tuning voltage varying from 0 to 2.5 V, and a power dissipation of only 7.4 mW

    Microwave CMOS VCOs and Front-Ends - using integrated passives on-chip and on-carrier

    Get PDF
    The increasing demand for high data rates in wireless communication systems is increasing the requirements on the transceiver front-ends, as they are pushed to utilize more and wider bands at higher frequencies. The work in this thesis is focused on receiver front-ends composed of Low Noise Amplifiers (LNAs), Mixers, and Voltage Controlled Oscillators (VCOs) operating at microwave frequencies. Traditionally, microwave electronics has used exclusive and more expensive semiconductor technologies (III-V materials). However, the rapid development of consumer electronics (e.g. video game consoles) the last decade has pushed the silicon CMOS IC technology towards even smaller feature sizes. This has resulted in high speed transistors (high fT and fmax) with low noise figures. However, as the breakdown voltages have decreased, a lower supply voltage must be used, which has had a negative impact on linearity and dynamic range. Nonetheless, todays downscaled CMOS technology is a feasible alternative for many microwave and even millimeter wave applications. The low quality factor (Q) of passive components on-chip usually limits the high frequency performance. For inductors realized in a standard CMOS process the substrate coupling results in a degraded Q. The quality factor can, however, be improved by moving the passive components off-chip and integrating them on a low loss carrier. This thesis therefore features microwave front-end and VCO designs in CMOS, where some designs have been flip-chip mounted on carriers featuring high Q inductors and low loss baluns. The thesis starts with an introduction to wireless communication, receiver architectures, front-end receiver blocks, and low loss carrier technology, followed by the included papers. The six included papers show the capability of CMOS and carrier technology at microwave frequencies: Papers II, III, and VI demonstrate fully integrated CMOS circuit designs. An LC-VCO using an accumulation mode varactor is presented in Paper II, a QVCO using 4-bit switched tuning is shown in Paper III, and a quadrature receiver front-end (including QVCO) is demonstrated in paper VI. Papers I and IV demonstrate receiver front-ends using low loss baluns on carrier for the LO and RF signals. Paper IV also includes a front-end using single-ended RF input which is converted to differential form in a novel merged LNA and balun. A VCO demonstrating the benefits of a high Q inductor on carrier is presented in Paper V

    High-frequency oscillator design for integrated transceivers

    Get PDF

    Low-power transceiver design for mobile wireless chemical biological sensors

    Get PDF
    The design of a smart integrated chemical sensor system that will enhance sensor performance and compatibility to Ad hoc network architecture remains a challenge. This work involves the design of a Transceiver for a mobile chemical sensor. The transceiver design integrates all building blocks on-chip, including a low-noise amplifier with an input-matching network, a Voltage Controlled Oscillator with injection locking, Gilbert cell mixers, and a Class E Power amplifier making it as a single-chip transceiver. This proposed low power 2GHz transceiver has been designed in TSMC 0.35~lm CMOS process using Cadence electronic design automation tools. Post layout HSPICE simulation indicates that Design meets the separation of noise levels by 52dB and 42dB in transmitter and receiver respectively with power consumption of 56 mW and 38 mW in transmit and receive mode
    • …
    corecore