62 research outputs found

    Expandible high-order cascade ya modulator with constant, reduced systematic loss of resolution

    Get PDF
    An arbitrary order sigma-delta modulator cascude architecture is presented with only I-bit loss of resolution due to scaling issues, even with single-bit quantizulion. This loss is kept with a high overloading point, regardless of the order. Simulations reveol that circuit imperfections can be tolerated up to 6th order, so that 90-dB SNDR can be obtained with x16 oversampling, without multi-bit quantization.European Commission 2001-34283/TAMES-2Ministerio de Ciencia y TecnologĂ­a TIC2001-0929/ADAVER

    14-bit 2.2-MS/s sigma-delta ADC's

    Get PDF

    A re-configurable pipeline ADC architecture with built-in self-test techniques

    Get PDF
    High-performance analog and mixed-signal integrated circuits are integral parts of today\u27s and future networking and communication systems. The main challenge facing the semiconductor industry is the ability to economically produce these analog ICs. This translates, in part, into the need to efficiently evaluate the performance of such ICs during manufacturing (production testing) and to come up with dynamic architectures that enable the performance of these ICs to be maximized during manufacturing and later when they\u27re operating in the field. On the performance evaluation side, this dissertation deals with the concept of Built-In-Self-Test (BIST) to allow the efficient and economical evaluation of certain classes of high-performance analog circuits. On the dynamic architecture side, this dissertation deals with pipeline ADCs and the use of BIST to dynamically, during production testing or in the field, re-configure them to produce better performing ICs.;In the BIST system proposed, the analog test signal is generated on-chip by sigma-delta modulation techniques. The performance of the ADC is measured on-chip by a digital narrow-band filter. When this system is used on the wafer level, significant testing time and thus testing cost can be saved.;A re-configurable pipeline ADC architecture to improve the dynamic performance is proposed. Based on dynamic performance measurements, the best performance configuration is chosen from a collection of possible pipeline configurations. This basic algorithm can be applied to many pipeline analog systems. The proposed grouping algorithm cuts down the number of evaluation permutation from thousands to 18 for a 9-bit ADC thus allowing the method to be used in real applications.;To validate the developments of this dissertation, a 40MS/s 9-bit re-configurable pipeline ADC was designed and implemented in TSMC\u27s 0.25mum single-poly CMOS digital process. This includes a fully differential folded-cascode gain-boosting operational amplifier with high gain and high unity-gain bandwidth. The experimental results strongly support the effectiveness of reconfiguration algorithm, which provides an average of 0.5bit ENOB improvement among the set of configurations. For many applications, this is a very significant performance improvement.;The BIST and re-configurability techniques proposed are not limited to pipeline ADCs only. The BIST methodology is applicable to many analog systems and the re-configurability is applicable to any analog pipeline system

    Design and implementation of a wideband sigma delta ADC

    Get PDF
    Abstract. High-speed and wideband ADCs have become increasingly important in response to the growing demand for high-speed wireless communication services. Continuous time sigma delta modulators (CTƩ∆M), well-known for their oversampling and noise shaping properties, offer a promising solution for low-power and high-speed design in wireless applications. The objective of this thesis is to design and implement a wideband CTƩ∆M for a global navigation satellite system(GNSS) receiver. The targeted modulator architecture is a 3rdorder single-bit CTƩ∆M, specifically designed to operate within a 15 MHz signal bandwidth. With an oversampling ratio of 25, the ADC’s sampling frequency is set at 768 MHz. The design goal is to achieve a theoretical signal to noise ratio (SNR) of 55 dB. This thesis focuses on the design and implementation of the CTƩ∆M, building upon the principles of a discrete time Ʃ∆ modulator, and leveraging system-level simulation and formulations. A detailed explanation of the coefficient calculation procedure specific to CTƩ∆ modulators is provided, along with a "top-down" design approach that ensures the specified requirements are met. MATLAB scripts for coefficient calculation are also included. To overcome the challenges associated with the implementation of CTƩ∆ modulators, particularly excess loop delay and clock jitter sensitivity, this thesis explores two key strategies: the introduction of a delay compensation path and the utilization of a finite impulse response (FIR) feedback DAC. By incorporating a delay compensation path, the stability of the modulator can be ensured and its noise transfer function (NTF) can be restored. Additionally, the integration of an FIR feedback DAC addresses the issue of clock jitter sensitivity, enhancing the overall performance and robustness of the CTƩ∆M. The CTƩ∆Ms employ the cascade of integrators with feed forward (CIFF) and cascade of integrators with feedforward and feedback (CIFF-B) topologies, with a particular emphasis on the CIFF-B configuration using 22nm CMOS technology node and a supply voltage of 0.8 V. Various simulations are performed to validate the modulator’s performance. The simulation results demonstrate an achievable SNR of 55 dB with a power consumption of 1.36 mW. Furthermore, the adoption of NTF zero optimization techniques enhances the SNR to 62 dB.Laajakaistaisen jatkuva-aikaisen sigma delta-AD-muuntimen suunnittelu ja toteutus. TiivistelmĂ€. Nopeat ja laajakaistaiset AD-muuntimet ovat tulleet entistĂ€ tĂ€rkeĂ€mmiksi nopeiden langattomien kommunikaatiopalvelujen kysynnĂ€n kasvaessa. Jatkuva-aikaiset sigma delta -modulaattorit (CTƩ∆M), joissa kĂ€ytetÀÀn ylinĂ€ytteistystĂ€ ja kohinanmuokkausta, tarjoavat lupaavan ratkaisun matalan tehonkulutuksen ja nopeiden langattomien sovellusten suunnitteluun. TĂ€mĂ€n työn tarkoituksena on suunnitella ja toteuttaa laajakaistainen jatkuva -aikainen sigma delta -modulaattori satelliittipaikannusjĂ€rjestelmien (GNSS) vastaanottimeen. Arkkitehtuuriltaan modulaattori on kolmannen asteen 1-bittinen CTƩ∆M, jolla on 15MHz:n signaalikaistanleveys. YlinĂ€ytteistyssuhde on 25 ja AD muuntimen nĂ€ytteistystaajuus 768 MHz. Tavoitteena on saavuttaa teoreettinen 55 dB signaalikohinasuhde (SNR). TĂ€mĂ€ työ keskittyy jatkuva-aikaisen sigma delta -modulaattorin suunnitteluun ja toteutukseen, perustuen diskreettiaikaisen Ʃ∆-modulaattorin periaatteisiin ja systeemitason simulointiin ja mallitukseen. Jatkuva-aikaisen sigma delta -modulaattorin kertoimien laskentamenetelmĂ€ esitetÀÀn yksityiskohtaisesti, ja vaatimusten tĂ€yttyminen varmistetaan “top-down” -suunnitteluperiaatteella. LiitteenĂ€ on kertoimien laskemiseen kĂ€ytetty MATLAB-koodi. Jatkuva-aikaisten sigma delta -modulaattoreiden erityishaasteiden, liian pitkĂ€n silmukkaviiveen ja kellojitterin herkkyyden, voittamiseksi tutkitaan kahta strategiaa, viiveen kompensointipolkua ja FIR takaisinkytkentĂ€ -DA muunninta. Viivekompensointipolkua kĂ€yttĂ€mĂ€llĂ€ modulaattorin stabiilisuus ja kohinansuodatusfunktio saadaan varmistettua ja korjattua. LisĂ€ksi FIR takaisinkytkentĂ€ -DA-muuntimen kĂ€yttö pienentÀÀ kellojitteriherkkyyttĂ€, parantaen jatkuva aikaisen sigma delta -modulaattorin kokonaissuorituskykyĂ€ ja luotettavuutta. Toteutetuissa jatkuva-aikaisissa sigma delta -modulaattoreissa on kytketty perĂ€kkĂ€in integraattoreita myötĂ€kytkentĂ€rakenteella (CIFF) ja toisessa sekĂ€ myötĂ€- ettĂ€ takaisinkytkentĂ€rakenteella (CIFF-B). PÀÀhuomio on CIFF-B rakenteessa, joka toteutetaan 22nm CMOS prosessissa kĂ€yttĂ€en 0.8 voltin kĂ€yttöjĂ€nnitettĂ€. Suorityskyky varmistetaan erilaisilla simuloinneilla, joiden perusteella 55 dB SNR saavutetaan 1.36 mW tehonkulutuksella. LisĂ€ksi kohinanmuokkausfunktion optimoinnilla SNR saadaan nostettua 62 desibeliin

    Design and Analysis of a Low-Power 8-Bit 500 KS/S SAR ADC for Bio-Medical Implant Devices

    Get PDF
    This thesis project involves the design and analysis of an 8-bit Successive Approximation Register (SAR) Analog to Digital Convertor (ADC), designed for low- power applications such as bio-medical implants. The sampling rate for this ADC is 500 KS/s. The power consumption for the whole SAR ADC system was measured to be 2.1 uW. The novelty of this project is the proposal of an extremely energy efficient comparator architecture. The result is the design of a final ADC with reasonable sampling speed, accuracy and low power consumption. In this project, all the different subsystems have been designed at the transistor level with 45 nm CMOS technology. The logical circuit was designed using Verilog language. It was then synthesized and integrated in the overall system

    Cascaded Linear Regulator with Negative Voltage Tracking Switching Regulator

    Get PDF
    DC-DC converters can be separated into two main groups: switching converters and linear regulators. Linear regulators such as Low Dropout Regulators (LDOs) are straightforward to implement and have a very stable output with low voltage ripple. However, the efficiency of an LDO can fluctuate greatly, as the power dissipation is a function of the device’s input and output. On the other hand, a switching regulator uses a switch to regulate energy levels. These types of regulators are more versatile when a larger change of voltage is needed, as efficiency is relatively stable across larger steps of voltages. However, switching regulators tend to have a larger output voltage ripple, which can be an issue for sensitive systems. An approach to utilize both in cascaded configuration while providing a negative output voltage will be presented in this paper. The proposed two-stage conversion system consists of a switching pre-regulator that can track the negative output voltage of the second stage (LDO) such that the difference between input and output voltages is always kept small under varying output voltage while maintaining the high overall conversion efficiency. Computer simulation and hardware results demonstrate that the proposed system can track the negative output voltage well. Additionally, the results show that the proposed system can provide and maintain good overall efficiency, load regulation, and output voltage ripple across a wide range of outputs

    Nuclear decay scheme studies using radiative capture of thermal neutrons

    Get PDF
    Ph.D.D. A. McClur

    Design of a low power switched-capacitor pipeline analog-to-digital converter

    Get PDF
    An Analog to Digital Converter (ADC) is a circuit which converts an analog signal into digital signal. Real world is analog, and the data processed by the computer or by other signal processing systems is digital. Therefore, the need for ADCs is obvious. In this thesis, several novel designs used to improve ADCs operation speed and reduce ADC power consumption are proposed. First, a high speed switched source follower (SSF) sample and hold amplifier without feedthrough penalty is implemented and simulated. The SSF sample and hold amplifier can achieve 6 Bit resolution with sampling rate at 10Gs/s. Second, a novel rail-to-rail time domain comparator used in successive approximation register ADC (SAR ADC) is implemented and simulated. The simulation results show that the proposed SAR ADC can only consume 1.3 muW with a 0.7 V power supply. Finally, a prototype pipeline ADC is implemented and fabricated in an IBM 90nm CMOS process. The proposed design is validated using measurement on a fabricated silicon IC, and the proposed 10-bit ADC achieves a peak signal-to-noise- and-distortion-ratio (SNDR) of 47 dB. This SNDR translates to a figure of merit (FOM) of 2.6N/conversion-step with a 1.2 V power supply
    • 

    corecore