1,236 research outputs found

    A survey on OFDM-based elastic core optical networking

    Get PDF
    Orthogonal frequency-division multiplexing (OFDM) is a modulation technology that has been widely adopted in many new and emerging broadband wireless and wireline communication systems. Due to its capability to transmit a high-speed data stream using multiple spectral-overlapped lower-speed subcarriers, OFDM technology offers superior advantages of high spectrum efficiency, robustness against inter-carrier and inter-symbol interference, adaptability to server channel conditions, etc. In recent years, there have been intensive studies on optical OFDM (O-OFDM) transmission technologies, and it is considered a promising technology for future ultra-high-speed optical transmission. Based on O-OFDM technology, a novel elastic optical network architecture with immense flexibility and scalability in spectrum allocation and data rate accommodation could be built to support diverse services and the rapid growth of Internet traffic in the future. In this paper, we present a comprehensive survey on OFDM-based elastic optical network technologies, including basic principles of OFDM, O-OFDM technologies, the architectures of OFDM-based elastic core optical networks, and related key enabling technologies. The main advantages and issues of OFDM-based elastic core optical networks that are under research are also discussed

    Spectral Efficiency of MIMO Millimeter-Wave Links with Single-Carrier Modulation for 5G Networks

    Full text link
    Future wireless networks will extensively rely upon bandwidths centered on carrier frequencies larger than 10GHz. Indeed, recent research has shown that, despite the large path-loss, millimeter wave (mmWave) frequencies can be successfully exploited to transmit very large data-rates over short distances to slowly moving users. Due to hardware complexity and cost constraints, single-carrier modulation schemes, as opposed to the popular multi-carrier schemes, are being considered for use at mmWave frequencies. This paper presents preliminary studies on the achievable spectral efficiency on a wireless MIMO link operating at mmWave in a typical 5G scenario. Two different single-carrier modem schemes are considered, i.e. a traditional modulation scheme with linear equalization at the receiver, and a single-carrier modulation with cyclic prefix, frequency-domain equalization and FFT-based processing at the receiver. Our results show that the former achieves a larger spectral efficiency than the latter. Results also confirm that the spectral efficiency increases with the dimension of the antenna array, as well as that performance gets severely degraded when the link length exceeds 100 meters and the transmit power falls below 0dBW. Nonetheless, mmWave appear to be very suited for providing very large data-rates over short distances.Comment: 8 pages, 8 figures, to appear in Proc. 20th International ITG Workshop on Smart Antennas (WSA2016

    Single-Carrier Modulation versus OFDM for Millimeter-Wave Wireless MIMO

    Full text link
    This paper presents results on the achievable spectral efficiency and on the energy efficiency for a wireless multiple-input-multiple-output (MIMO) link operating at millimeter wave frequencies (mmWave) in a typical 5G scenario. Two different single-carrier modem schemes are considered, i.e., a traditional modulation scheme with linear equalization at the receiver, and a single-carrier modulation with cyclic prefix, frequency-domain equalization and FFT-based processing at the receiver; these two schemes are compared with a conventional MIMO-OFDM transceiver structure. Our analysis jointly takes into account the peculiar characteristics of MIMO channels at mmWave frequencies, the use of hybrid (analog-digital) pre-coding and post-coding beamformers, the finite cardinality of the modulation structure, and the non-linear behavior of the transmitter power amplifiers. Our results show that the best performance is achieved by single-carrier modulation with time-domain equalization, which exhibits the smallest loss due to the non-linear distortion, and whose performance can be further improved by using advanced equalization schemes. Results also confirm that performance gets severely degraded when the link length exceeds 90-100 meters and the transmit power falls below 0 dBW.Comment: accepted for publication on IEEE Transactions on Communication

    Performance Analysis of Post Compensated Long Haul High Speed Coherent Optical OFDM System

    Get PDF
    This paper addresses the performance analysis of OFDM transmission system based on coherent detection over high speed long haul optical links with high spectral efficiency modulation formats such as Quadrature Amplitude Modulation (QAM) as a mapping method prior to the OFDM multicarrier representation. Post compensation is used to compensate for phase noise effects. Coherent detection for signal transmitted at bit rate of 40 Gbps is successfully achieved up to distance of 3200km. Performance is analyzed in terms of Symbol Error Rate and Error Vector Magnitude by varying Optical Signal to Noise Ratio (OSNR) and varying the length of the fiber i.e transmission distance. Transmission performance is also observed through constellation diagrams at different transmission distances and different OSNRs

    Analog Radio-over-Fiber for 5G/6G Millimeter-Wave Communications

    Get PDF

    Time-Frequency Packing for High Capacity Coherent Optical Links

    Full text link
    We consider realistic long-haul optical links, with linear and nonlinear impairments, and investigate the application of time-frequency packing with low-order constellations as a possible solution to increase the spectral efficiency. A detailed comparison with available techniques from the literature will be also performed. We will see that this technique represents a feasible solution to overcome the relevant theoretical and technological issues related to this spectral efficiency increase and could be more effective than the simple adoption of high-order modulation formats.Comment: 10 pages, 9 figures. arXiv admin note: text overlap with arXiv:1406.5685 by other author

    On Spectral Coexistence of CP-OFDM and FB-MC Waveforms in 5G Networks

    Full text link
    Future 5G networks will serve a variety of applications that will coexist on the same spectral band and geographical area, in an uncoordinated and asynchronous manner. It is widely accepted that using CP-OFDM, the waveform used by most current communication systems, will make it difficult to achieve this paradigm. Especially, CP-OFDM is not adapted for spectral coexistence because of its poor spectral localization. Therefore, it has been widely suggested to use filter bank based multi carrier (FB-MC) waveforms with enhanced spectral localization to replace CP-OFDM. Especially, FB-MC waveforms are expected to facilitate coexistence with legacy CP-OFDM based systems. However, this idea is based on the observation of the PSD of FB-MC waveforms only. In this paper, we demonstrate that this approach is flawed and show what metric should be used to rate interference between FB-MC and CP-OFDM systems. Finally, our results show that using FB-MC waveforms does not facilitate coexistence with CP-OFDM based systems to a high extent.Comment: Manuscript submitted for review to IEEE Transactions on Wireless Communication
    • …
    corecore