56,537 research outputs found

    Analysis of WIMP and Post WIMP Interactive Systems based on Formal Specification

    Get PDF
    While designing interactive software, the use of a formal specification technique is of great help by providing non-ambiguous, complete and concise descriptions. The advantages of using such a formalism is widened if it is provided by formal analysis techniques that allow to prove properties about the design, thus giving an early verification to the designer before the application is actually implemented. This paper presents how models built using the Interactive Cooperative Objects formalism (ICOs) are amenable to formal verification. The emphasis is on the behavioral part of the description of the interactive systems and more precisely on the properties at the interaction technique level. However, the process and the associated tools can be generalized to the other parts of the interactive systems (including the non-interactive parts)

    Declarative Support for Prototyping Interactive Systems

    Get PDF
    The development of complex, multi-user, interactive systems is a difficult process that requires both a rapid iterative approach, and the ability to reason carefully about system designs. This thesis argues that a combination of declarative prototyping and formal specification provides a suitable way of satisfying these requirements. The focus of this thesis is on the development of software tools for prototyping interactive systems. In particular, it uses a declarative approach, based on the functional programming paradigm. This thesis makes two contributions. The most significant contribution is the presentation of FranTk, a new Graphical User Interface language, embedded in the functional language Haskell. It is suitable for prototyping complex, concurrent, multi-user systems. It allows systems to be built in a high level, structured manner. In particular, it provides good support for specifying real-time properties of such systems. The second contribution is a mechanism that allows a formal specification to be derived from a high level FranTk prototype. The approach allows this to be done automatically. This specification can then be checked, with tool support, to verify some safety properties about a system. To avoid the state space explosion problem that would be faced when verifying an entire system, we focus on partial verification. This concentrates on key areas of a design: in particular this means that we only derive a specification from parts of a prototype. To demonstrate the scalability of both the prototyping and verification approaches, this thesis uses a series of case studies including a multi-user design rationale editor and a prototype data-link Air Traffic Control system

    The specification-based validation of reliable multicast protocol: Problem Report

    Get PDF
    Reliable Multicast Protocol (RMP) is a communication protocol that provides an atomic, totally ordered, reliable multicast service on top of unreliable IP multicasting. In this report, we develop formal models for RMP using existing automated verification systems, and perform validation on the formal RMP specifications. The validation analysis help identifies some minor specification and design problems. We also use the formal models of RMP to generate a test suite for conformance testing of the implementation. Throughout the process of RMP development, we follow an iterative, interactive approach that emphasizes concurrent and parallel progress of implementation and verification processes. Through this approach, we incorporate formal techniques into our development process, promote a common understanding for the protocol, increase the reliability of our software, and maintain high fidelity between the specifications of RMP and its implementation

    Reasoning about order errors in interaction

    Get PDF
    Reliability of an interactive system depends on users as well as the device implementation. User errors can result in catastrophic system failure. However, work from the field of cognitive science shows that systems can be designed so as to completely eliminate whole classes of user errors. This means that user errors should also fall within the remit of verification methods. In this paper we demonstrate how the HOL theorem prover [7] can be used to detect and prove the absence of the family of errors known as order errors. This is done by taking account of the goals and knowledge of users. We provide an explicit generic user model which embodies theory from the cognitive sciences about the way people are known to act. The user model describes action based on user communication goals. These are goals that a user adopts based on their knowledge of the task they must perform to achieve their goals. We use a simple example of a vending machine to demonstrate the approach. We prove that a user does achieve their goal for a particular design of machine. In doing so we demonstrate that communication goal based errors cannot occur

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    A Dual-Engine for Early Analysis of Critical Systems

    Get PDF
    This paper presents a framework for modeling, simulating, and checking properties of critical systems based on the Alloy language -- a declarative, first-order, relational logic with a built-in transitive closure operator. The paper introduces a new dual-analysis engine that is capable of providing both counterexamples and proofs. Counterexamples are found fully automatically using an SMT solver, which provides a better support for numerical expressions than the existing Alloy Analyzer. Proofs, however, cannot always be found automatically since the Alloy language is undecidable. Our engine offers an economical approach by first trying to prove properties using a fully-automatic, SMT-based analysis, and switches to an interactive theorem prover only if the first attempt fails. This paper also reports on applying our framework to Microsoft's COM standard and the mark-and-sweep garbage collection algorithm.Comment: Workshop on Dependable Software for Critical Infrastructures (DSCI), Berlin 201

    ISML: an interface specification meta-language

    Get PDF
    In this paper we present an abstract metaphor model situated within a model-based user interface framework. The inclusion of metaphors in graphical user interfaces is a well established, but mostly craft-based strategy to design. A substantial body of notations and tools can be found within the model-based user interface design literature, however an explicit treatment of metaphor and its mappings to other design views has yet to be addressed. We introduce the Interface Specification Meta-Language (ISML) framework and demonstrate its use in comparing the semantic and syntactic features of an interactive system. Challenges facing this research are outlined and further work proposed
    • ā€¦
    corecore