1,363 research outputs found

    SARSCEST (human factors)

    Get PDF
    People interact with the processes and products of contemporary technology. Individuals are affected by these in various ways and individuals shape them. Such interactions come under the label 'human factors'. To expand the understanding of those to whom the term is relatively unfamiliar, its domain includes both an applied science and applications of knowledge. It means both research and development, with implications of research both for basic science and for development. It encompasses not only design and testing but also training and personnel requirements, even though some unwisely try to split these apart both by name and institutionally. The territory includes more than performance at work, though concentration on that aspect, epitomized in the derivation of the term ergonomics, has overshadowed human factors interest in interactions between technology and the home, health, safety, consumers, children and later life, the handicapped, sports and recreation education, and travel. Two aspects of technology considered most significant for work performance, systems and automation, and several approaches to these, are discussed

    ROLE AND IMPORTANCE OF TECHNOLOGY DEVELOPMENT AND IMPROVEMENT EMERGENCY ASSISTANCE AND SUSTAINABLE DEVELOPMENT AND ENVIRONMENTAL PROTECTION IN ROMANIA

    Get PDF
    Year 2014 was considered by NASA and NOAA hottest year in history. Combined temperature of the atmosphere and oceans has increased overall by 0.68 degrees Celsius, and the devastating effects of climate changes produced irreversible consequences on the sustainability of the planet earth. Increasing the frequency, intensity and complexity of their manifestation caused initiation and development of global policies aimed at mitigating climate change priority, reducing the risk of natural disasters or anthropological costs and negative effects to society and the environment. In order to fulfill the responsibilities assumed by Romania as a member of international bodies is necessary to search and apply new solutions as revolutionary and effective, especially autonomous enabling technology development and improvement of emergency intervention and replacement of emergency autonomous robotic systems. Autonomous robotic systems allow execution of prevention and management of emergencies in areas difficult to reach, hostile life and result in increasing their efficiency

    Design of a rescue robot for search and mapping operation

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2006Includes bibliographical references (leaves: 65-66)Text in English; Abstract: Turkish and Englishx, 76 leavesThe aim of this thesis is to design a mobile robot for rescue operations after an earthquake. The robot is designed to locate injured victims and life triangle in debris, to create a map of the disaster area and to collect the necessary information needed by digging and support robots in order to the database center. This robot enables us to rescue the victim in the shortest time with minimum injury. This will let us risking the lives of the rescue teams much less as well as rescuing much more victim alive.Robot is designed with the longitudinal body design. Shock absorber system gives the damper effect against falls as well as adding advanced equilibrium properties while passing through a rough land. Driving mechanism is a tracked steering system.Front and back arm system is developed to provide high mobility while overtaking the obstacles.Secondly hovercraft type robot, which works with the cushion pressure principle, is designed as a rescue robot. It is thought that if the adequate height is supplied, the robot could manage to overcome obstacles.As a third design, ball robot, which could easily move uphill and has a capability to overrun obstacles, is studied.Jumping mechanism will be working by magnetic piston.In addition robot is equipped with the sensors so that it has capable of the navigation. In order to achieve feasible sensor systems, all electronic components are evaluated and the most effective sensors are chosen

    Locomotion system for ground mobile robots in uneven and unstructured environments

    Get PDF
    One of the technology domains with the greatest growth rates nowadays is service robots. The extensive use of ground mobile robots in environments that are unstructured or structured for humans is a promising challenge for the coming years, even though Automated Guided Vehicles (AGV) moving on flat and compact grounds are already commercially available and widely utilized to move components and products inside indoor industrial buildings. Agriculture, planetary exploration, military operations, demining, intervention in case of terrorist attacks, surveillance, and reconnaissance in hazardous conditions are important application domains. Due to the fact that it integrates the disciplines of locomotion, vision, cognition, and navigation, the design of a ground mobile robot is extremely interdisciplinary. In terms of mechanics, ground mobile robots, with the exception of those designed for particular surroundings and surfaces (such as slithering or sticky robots), can move on wheels (W), legs (L), tracks (T), or hybrids of these concepts (LW, LT, WT, LWT). In terms of maximum speed, obstacle crossing ability, step/stair climbing ability, slope climbing ability, walking capability on soft terrain, walking capability on uneven terrain, energy efficiency, mechanical complexity, control complexity, and technology readiness, a systematic comparison of these locomotion systems is provided in [1]. Based on the above-mentioned classification, in this thesis, we first introduce a small-scale hybrid locomotion robot for surveillance and inspection, WheTLHLoc, with two tracks, two revolving legs, two active wheels, and two passive omni wheels. The robot can move in several different ways, including using wheels on the flat, compact ground,[1] tracks on soft, yielding terrain, and a combination of tracks, legs, and wheels to navigate obstacles. In particular, static stability and non-slipping characteristics are considered while analyzing the process of climbing steps and stairs. The experimental test on the first prototype has proven the planned climbing maneuver’s efficacy and the WheTLHLoc robot's operational flexibility. Later we present another development of WheTLHLoc and introduce WheTLHLoc 2.0 with newly designed legs, enabling the robot to deal with bigger obstacles. Subsequently, a single-track bio-inspired ground mobile robot's conceptual and embodiment designs are presented. This robot is called SnakeTrack. It is designed for surveillance and inspection activities in unstructured environments with constrained areas. The vertebral column has two end modules and a variable number of vertebrae linked by compliant joints, and the surrounding track is its essential component. Four motors drive the robot: two control the track motion and two regulate the lateral flexion of the vertebral column for steering. The compliant joints enable limited passive torsion and retroflection of the vertebral column, which the robot can use to adapt to uneven terrain and increase traction. Eventually, the new version of SnakeTrack, called 'Porcospino', is introduced with the aim of allowing the robot to move in a wider variety of terrains. The novelty of this thesis lies in the development and presentation of three novel designs of small-scale mobile robots for surveillance and inspection in unstructured environments, and they employ hybrid locomotion systems that allow them to traverse a variety of terrains, including soft, yielding terrain and high obstacles. This thesis contributes to the field of mobile robotics by introducing new design concepts for hybrid locomotion systems that enable robots to navigate challenging environments. The robots presented in this thesis employ modular designs that allow their lengths to be adapted to suit specific tasks, and they are capable of restoring their correct position after falling over, making them highly adaptable and versatile. Furthermore, this thesis presents a detailed analysis of the robots' capabilities, including their step-climbing and motion planning abilities. In this thesis we also discuss possible refinements for the robots' designs to improve their performance and reliability. Overall, this thesis's contributions lie in the design and development of innovative mobile robots that address the challenges of surveillance and inspection in unstructured environments, and the analysis and evaluation of these robots' capabilities. The research presented in this thesis provides a foundation for further work in this field, and it may be of interest to researchers and practitioners in the areas of robotics, automation, and inspection. As a general note, the first robot, WheTLHLoc, is a hybrid locomotion robot capable of combining tracked locomotion on soft terrains, wheeled locomotion on flat and compact grounds, and high obstacle crossing capability. The second robot, SnakeTrack, is a small-size mono-track robot with a modular structure composed of a vertebral column and a single peripherical track revolving around it. The third robot, Porcospino, is an evolution of SnakeTrack and includes flexible spines on the track modules for improved traction on uneven but firm terrains, and refinements of the shape of the track guidance system. This thesis provides detailed descriptions of the design and prototyping of these robots and presents analytical and experimental results to verify their capabilities

    The Application of Mixed Reality Within Civil Nuclear Manufacturing and Operational Environments

    Get PDF
    This thesis documents the design and application of Mixed Reality (MR) within a nuclear manufacturing cell through the creation of a Digitally Assisted Assembly Cell (DAAC). The DAAC is a proof of concept system, combining full body tracking within a room sized environment and bi-directional feedback mechanism to allow communication between users within the Virtual Environment (VE) and a manufacturing cell. This allows for training, remote assistance, delivery of work instructions, and data capture within a manufacturing cell. The research underpinning the DAAC encompasses four main areas; the nuclear industry, Virtual Reality (VR) and MR technology, MR within manufacturing, and finally the 4 th Industrial Revolution (IR4.0). Using an array of Kinect sensors, the DAAC was designed to capture user movements within a real manufacturing cell, which can be transferred in real time to a VE, creating a digital twin of the real cell. Users can interact with each other via digital assets and laser pointers projected into the cell, accompanied by a built-in Voice over Internet Protocol (VoIP) system. This allows for the capture of implicit knowledge from operators within the real manufacturing cell, as well as transfer of that knowledge to future operators. Additionally, users can connect to the VE from anywhere in the world. In this way, experts are able to communicate with the users in the real manufacturing cell and assist with their training. The human tracking data fills an identified gap in the IR4.0 network of Cyber Physical System (CPS), and could allow for future optimisations within manufacturing systems, Material Resource Planning (MRP) and Enterprise Resource Planning (ERP). This project is a demonstration of how MR could prove valuable within nuclear manufacture. The DAAC is designed to be low cost. It is hoped this will allow for its use by groups who have traditionally been priced out of MR technology. This could help Small to Medium Enterprises (SMEs) close the double digital divide between themselves and larger global corporations. For larger corporations it offers the benefit of being low cost, and, is consequently, easier to roll out across the value chain. Skills developed in one area can also be transferred to others across the internet, as users from one manufacturing cell can watch and communicate with those in another. However, as a proof of concept, the DAAC is at Technology Readiness Level (TRL) five or six and, prior to its wider application, further testing is required to asses and improve the technology. The work was patented in both the UK (S. R EDDISH et al., 2017a), the US (S. R EDDISH et al., 2017b) and China (S. R EDDISH et al., 2017c). The patents are owned by Rolls-Royce and cover the methods of bi-directional feedback from which users can interact from the digital to the real and vice versa. Stephen Reddish Mixed Mode Realities in Nuclear Manufacturing Key words: Mixed Mode Reality, Virtual Reality, Augmented Reality, Nuclear, Manufacture, Digital Twin, Cyber Physical Syste

    A framework for digitisation of manual manufacturing task knowledge using gaming interface technology

    Get PDF
    Intense market competition and the global skill supply crunch are hurting the manufacturing industry, which is heavily dependent on skilled labour. Companies must look for innovative ways to acquire manufacturing skills from their experts and transfer them to novices and eventually to machines to remain competitive. There is a lack of systematic processes in the manufacturing industry and research for cost-effective capture and transfer of human skills. Therefore, the aim of this research is to develop a framework for digitisation of manual manufacturing task knowledge, a major constituent of which is human skill. The proposed digitisation framework is based on the theory of human-workpiece interactions that is developed in this research. The unique aspect of the framework is the use of consumer-grade gaming interface technology to capture and record manual manufacturing tasks in digital form to enable the extraction, decoding and transfer of manufacturing knowledge constituents that are associated with the task. The framework is implemented, tested and refined using 5 case studies, including 1 toy assembly task, 2 real-life-like assembly tasks, 1 simulated assembly task and 1 real-life composite layup task. It is successfully validated based on the outcomes of the case studies and a benchmarking exercise that was conducted to evaluate its performance. This research contributes to knowledge in five main areas, namely, (1) the theory of human-workpiece interactions to decipher human behaviour in manual manufacturing tasks, (2) a cohesive and holistic framework to digitise manual manufacturing task knowledge, especially tacit knowledge such as human action and reaction skills, (3) the use of low-cost gaming interface technology to capture human actions and the effect of those actions on workpieces during a manufacturing task, (4) a new way to use hidden Markov modelling to produce digital skill models to represent human ability to perform complex tasks and (5) extraction and decoding of manufacturing knowledge constituents from the digital skill models

    Safety by design in Danish construction

    Get PDF

    Unlimited-wokspace teleoperation

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2012Includes bibliographical references (leaves: 100-105)Text in English; Abstract: Turkish and Englishxiv, 109 leavesTeleoperation is, in its brief description, operating a vehicle or a manipulator from a distance. Teleoperation is used to reduce mission cost, protect humans from accidents that can be occurred during the mission, and perform complex missions for tasks that take place in areas which are difficult to reach or dangerous for humans. Teleoperation is divided into two main categories as unilateral and bilateral teleoperation according to information flow. This flow can be configured to be in either one direction (only from master to slave) or two directions (from master to slave and from slave to master). In unlimited-workspace teleoperation, one of the types of bilateral teleoperation, mobile robots are controlled by the operator and environmental information is transferred from the mobile robot to the operator. Teleoperated vehicles can be used in a variety of missions in air, on ground and in water. Therefore, different constructional types of robots can be designed for the different types of missions. This thesis aims to design and develop an unlimited-workspace teleoperation which includes an omnidirectional mobile robot as the slave system to be used in further researches. Initially, an omnidirectional mobile robot was manufactured and robot-operator interaction and efficient data transfer was provided with the established communication line. Wheel velocities were measured in real-time by Hall-effect sensors mounted on robot chassis to be integrated in controllers. A dynamic obstacle detection system, which is suitable for omnidirectional mobility, was developed and two obstacle avoidance algorithms (semi-autonomous and force reflecting) were created and tested. Distance information between the robot and the obstacles was collected by an array of sensors mounted on the robot. In the semi-autonomous teleoperation scenario, distance information is used to avoid obstacles autonomously and in the force-reflecting teleoperation scenario obstacles are informed to the user by sending back the artificially created forces acting on the slave robot. The test results indicate that obstacle avoidance performance of the developed vehicle with two algorithms is acceptable in all test scenarios. In addition, two control models were developed (kinematic and dynamic control) for the local controller of the slave robot. Also, kinematic controller was supported by gyroscope
    corecore