1,143 research outputs found

    CONCEPTUAL AND PRELIMINARY DESIGN OF UNMANNED GROUND VEHICLE IN MONITORING OIL AND GAS PLANT

    Get PDF
    An Unmanned Ground Vehicle or UGV, as the name states, is a vehicle on the ground can operated with or without any human pilot on board. This project involves designing a robust and suitable UGV structure and integrating UGV technologies specifically to adapt in the harsh conditions of oil and gas plant and providing monitoring of a human’s eye view of the plant. The process of designing will start from conceptual design until detail design. A design of UGV consisting with robust structure to install sensors, camera, boards, and all the systems. The control of this UGV will continuous by master student from electrical department. For design this UGV, the author have study types of UGV, its function and ability. For the chassis, it will be modeled using Autodesk Inventor or Solidworks software to ensure design is applicable. The expected outcome of this project is finished prototype that can be maneuvered in two modes, manually and autonomous. For now, the progress is up to detail design on the UGV and MSC ADAM view analysis for motion system. In the result, the author will show the detail design and the analysis how these UGV system function

    A survey on fractional order control techniques for unmanned aerial and ground vehicles

    Get PDF
    In recent years, numerous applications of science and engineering for modeling and control of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) systems based on fractional calculus have been realized. The extra fractional order derivative terms allow to optimizing the performance of the systems. The review presented in this paper focuses on the control problems of the UAVs and UGVs that have been addressed by the fractional order techniques over the last decade

    Cooperative and non-cooperative sense-and-avoid in the CNS+A context: a unified methodology

    Get PDF
    A unified approach to cooperative and noncooperative Sense-and-Avoid (SAA) is presented that addresses the technical and regulatory challenges of Unmanned Aircraft Systems (UAS) integration into nonsegregated airspace. In this paper, state-of-the-art sensor/system technologies for cooperative and noncooperative SAA are reviewed and a reference system architecture is presented. Automated selection of sensors/systems including passive and active Forward Looking Sensors (FLS), Traffic Collision Avoidance System (TCAS) and Automatic Dependent Surveillance - Broadcast (ADS-B) system is performed based on Boolean Decision Logics (BDL) to support trusted autonomous operations during all flight phases. The BDL adoption allows for a dynamic reconfiguration of the SAA architecture, based on the current error estimates of navigation and tracking sensors/systems. The significance of this approach is discussed in the Communication, Navigation and Surveillance/Air Traffic Management and Avionics (CNS+A) context, with a focus on avionics and ATM certification requirements. Additionally, the mathematical models employed in the SAA Unified Method (SUM) to compute the overall uncertainty volume in the airspace surrounding an intruder/obstacle are described. In the presented methodology, navigation and tracking errors affecting the host UAS platform and intruder sensor measurements are translated to unified range and bearing uncertainty descriptors. Simulation case studies are presented to evaluate the performance of the unified approach on a representative UAS host platform and a number of intruder platforms. The results confirm the validity of the proposed unified methodology providing a pathway for certification of SAA systems that typically employ a suite of non-cooperative sensors and/or cooperative systems

    CONCEPTUAL AND PRELIMINARY DESIGN OF UNMANNED GROUND VEHICLE IN MONITORING OIL AND GAS PLANT

    Get PDF
    An Unmanned Ground Vehicle or UGV, as the name states, is a vehicle on the ground can operated with or without any human pilot on board. This project involves designing a robust and suitable UGV structure and integrating UGV technologies specifically to adapt in the harsh conditions of oil and gas plant and providing monitoring of a human’s eye view of the plant. The process of designing will start from conceptual design until detail design. A design of UGV consisting with robust structure to install sensors, camera, boards, and all the systems. The control of this UGV will continuous by master student from electrical department. For design this UGV, the author have study types of UGV, its function and ability. For the chassis, it will be modeled using Autodesk Inventor or Solidworks software to ensure design is applicable. The expected outcome of this project is finished prototype that can be maneuvered in two modes, manually and autonomous. For now, the progress is up to detail design on the UGV and MSC ADAM view analysis for motion system. In the result, the author will show the detail design and the analysis how these UGV system function

    Mechatronic Systems

    Get PDF
    Mechatronics, the synergistic blend of mechanics, electronics, and computer science, has evolved over the past twenty five years, leading to a novel stage of engineering design. By integrating the best design practices with the most advanced technologies, mechatronics aims at realizing high-quality products, guaranteeing at the same time a substantial reduction of time and costs of manufacturing. Mechatronic systems are manifold and range from machine components, motion generators, and power producing machines to more complex devices, such as robotic systems and transportation vehicles. With its twenty chapters, which collect contributions from many researchers worldwide, this book provides an excellent survey of recent work in the field of mechatronics with applications in various fields, like robotics, medical and assistive technology, human-machine interaction, unmanned vehicles, manufacturing, and education. We would like to thank all the authors who have invested a great deal of time to write such interesting chapters, which we are sure will be valuable to the readers. Chapters 1 to 6 deal with applications of mechatronics for the development of robotic systems. Medical and assistive technologies and human-machine interaction systems are the topic of chapters 7 to 13.Chapters 14 and 15 concern mechatronic systems for autonomous vehicles. Chapters 16-19 deal with mechatronics in manufacturing contexts. Chapter 20 concludes the book, describing a method for the installation of mechatronics education in schools

    Design of novel adaptive magnetic adhesion mechanism for climbing robots in ferric structures

    Get PDF
    The work presented in this thesis proposes a novel adaptive magnetic adhesion mechanism that can be implemented in most locomotion mechanisms employed in climbing robots for ferric structures. This novel mechanism has the capability to switch OFF and ON its magnetic adhesion with minimal power consumption, and remain at either state after the excitation is removed. Furthermore, the proposed adhesion mechanism has the ability to adapt the strength of the adhesive force to a desired magnitude. These capabilities make the proposed adhesion mechanism a potential solution in the field of wall climbing robots. The novel contributions of the proposed mechanism include the switching of the adhesive force, selectivity of the adhesive force magnitude; determination of the parameters that have an impact in the final adhesive force. Finally, a final prototype is constructed with customised components and it is subject to a set of simulations and experiments to validate its performance

    Evaluating GNSS integrity augmentation techniques for UAS sense-and-avoid

    Get PDF
    Global Navigation Satellite Systems (GNSS) far exceed the navigation accuracies provided by other state-of-the-art sensors for aerospace applications. This can support the development of low-cost and high performance navigation and guidance architectures for Unmanned Aircraft Systems (UAS) and, in conjunction with suitable data link technologies, the provision of Automated Dependent Surveillance (ADS) functionalities for cooperative Sense-and-Avoid (SAA). In non-cooperative SAA, the adoption of GNSS can also provide the key positioning and, in some cases, attitude data (using multiple antennas) required for automated collision avoidance. A key limitation of GNSS for both cooperative (ADS) and non-cooperative applications is represented by the achievable levels of integrity. Therefore, an Avionics Based Integrity Augmentation (ABIA) solution is proposed to support the development of an integrity-augmented SAA architecture suitable for both cooperative and non-cooperative scenarios. The performance of this Integrity-Augmented SAA (IAS) architecture was evaluated in representative simulation case studies. Additionally, the ABIA performances in terms of False Alarm Rate (FAR) and Detection Probability (DP) were assessed and compared with Space-Based and Ground-Based Augmentation Systems (SBAS/GBAS). Simulation results show that the proposed IAS architecture is capable of performing high-integrity conflict detection and resolution when GNSS is used as the primary source of navigation data and there is a synergy with SBAS/GBAS in providing suitable (predictive and reactive) integrity flags in all flight phases. Therefore, the integration of ABIA with SBAS/GBAS is a clear opportunity for future research towards the development of a Space-Ground-Avionics Augmentation Network (SGAAN) for UAS SAA and other safety-critical aviation applications
    • …
    corecore