335 research outputs found

    Modelling, simulation and experimental verification of a wheeled-locomotion system based on omnidirectional wheels

    Get PDF
    The following work focuses on the kinematic and dynamic study of a four-wheeled robot, which is equipped with omnidirectional Mecanum wheels. The main objective of the thesis is to obtain a mathematical model from which both the kinematics and kinetics of the robot can be analyzed. Furthermore, the study presents a methodology to optimize the torques (and subsequent associated voltages) provided by each of the motors on the robot for a given trajectory. A system in which a non-powered trailer pulled by the robot is also analyzed at a kinematic level. In this stage, four different cases are considered. The construction of the trailer is also described on this work. In the first chapter, the global state of the art on analysis and control of omnidirectional robots (with focus on robots with Mecanum wheels) is presented. In the second chapter, the physical considerations for the general movement of the robot are analyzed, in order to derive the kinematic constrain equations of the locomotion system. The differential equation of motion is then derived using Lagrange-equations with multipliers. This chapter presents as well the kinematic analysis for a robot-trailer system. The third chapter describes the general process on the design of the trailer, including the rejected ideas for its construction. The fourth chapter focuses on verifying the final results of the design process, as well as tests to check the mobility of the system. Conclusions and future work are analyzed on the final part of the document, as well as the references and the acknowledgments to all the people involved in the project.Tesi

    Nonuniform Dual-Rate Extended Kalman-Filter-Based Sensor Fusion for Path-Following Control of a Holonomic Mobile Robot with Four Mecanum Wheels

    Full text link
    [EN] This paper presents an extended Kalman-filter-based sensor fusion approach, which enables path-following control of a holonomic mobile robot with four mecanum wheels. Output measurements of the mobile platform may be sensed at different rates: odometry and orientation data can be obtained at a fast rate, whereas position information may be generated at a slower rate. In addition, as a consequence of possible sensor failures or the use of lossy wireless sensor networks, the presence of the measurements may be nonuniform. These issues may degrade the path-following control performance. The consideration of a nonuniform dual-rate extended Kalman filter (NUDREKF) enables us to estimate fast-rate robot states from nonuniform, slow-rate measurements. Providing these estimations to the motion controller, a fast-rate control signal can be generated, reaching a satisfactory path-following behavior. The proposed NUDREKF is stated to represent any possible sampling pattern by means of a diagonal matrix, which is updated at a fast rate from the current, existing measurements. This fact results in a flexible formulation and a straightforward algorithmic implementation. A modified Pure Pursuit path-tracking algorithm is used, where the reference linear velocity is decomposed into Cartesian components, which are parameterized by a variable gain that depends on the distance to the target point. The proposed solution was evaluated using a realistic simulation model, developed with Simscape Multibody (Matlab/Simulink), of the four-mecanum-wheeled mobile platform. This model includes some of the nonlinearities present in a real vehicle, such as dead-zone, saturation, encoder resolution, and wheel sliding, and was validated by comparing real and simulated behavior. Comparison results reveal the superiority of the sensor fusion proposal under the presence of nonuniform, slow-rate measurements.Grant RTI2018-096590-B-I00 funded by MCIN/AEI/10.13039/501100011033 and by "ERDF A way of making Europe" and Grant PRE2019-088467 funded by MCIN/AEI/10.13039/501100011033 and by "ESF Investing in your future".Pizá, R.; Carbonell-Lázaro, R.; Casanova Calvo, V.; Cuenca, Á.; Salt Llobregat, JJ. (2022). Nonuniform Dual-Rate Extended Kalman-Filter-Based Sensor Fusion for Path-Following Control of a Holonomic Mobile Robot with Four Mecanum Wheels. Applied Sciences. 12(7):1-23. https://doi.org/10.3390/app1207356012312

    Contemporary Robotics

    Get PDF
    This book book is a collection of 18 chapters written by internationally recognized experts and well-known professionals of the field. Chapters contribute to diverse facets of contemporary robotics and autonomous systems. The volume is organized in four thematic parts according to the main subjects, regarding the recent advances in the contemporary robotics. The first thematic topics of the book are devoted to the theoretical issues. This includes development of algorithms for automatic trajectory generation using redudancy resolution scheme, intelligent algorithms for robotic grasping, modelling approach for reactive mode handling of flexible manufacturing and design of an advanced controller for robot manipulators. The second part of the book deals with different aspects of robot calibration and sensing. This includes a geometric and treshold calibration of a multiple robotic line-vision system, robot-based inline 2D/3D quality monitoring using picture-giving and laser triangulation, and a study on prospective polymer composite materials for flexible tactile sensors. The third part addresses issues of mobile robots and multi-agent systems, including SLAM of mobile robots based on fusion of odometry and visual data, configuration of a localization system by a team of mobile robots, development of generic real-time motion controller for differential mobile robots, control of fuel cells of mobile robots, modelling of omni-directional wheeled-based robots, building of hunter- hybrid tracking environment, as well as design of a cooperative control in distributed population-based multi-agent approach. The fourth part presents recent approaches and results in humanoid and bioinspirative robotics. It deals with design of adaptive control of anthropomorphic biped gait, building of dynamic-based simulation for humanoid robot walking, building controller for perceptual motor control dynamics of humans and biomimetic approach to control mechatronic structure using smart materials

    Wheeled Mobile Robots: State of the Art Overview and Kinematic Comparison Among Three Omnidirectional Locomotion Strategies

    Get PDF
    In the last decades, mobile robotics has become a very interesting research topic in the feld of robotics, mainly because of population ageing and the recent pandemic emergency caused by Covid-19. Against this context, the paper presents an overview on wheeled mobile robot (WMR), which have a central role in nowadays scenario. In particular, the paper describes the most commonly adopted locomotion strategies, perception systems, control architectures and navigation approaches. After having analyzed the state of the art, this paper focuses on the kinematics of three omnidirectional platforms: a four mecanum wheels robot (4WD), a three omni wheel platform (3WD) and a two swerve-drive system (2SWD). Through a dimensionless approach, these three platforms are compared to understand how their mobility is afected by the wheel speed limitations that are present in every practical application. This original comparison has not been already presented by the literature and it can be used to improve our understanding of the kinematics of these mobile robots and to guide the selection of the most appropriate locomotion system according to the specifc application

    Adaptive robust control of an omnidirectional mobile platform for autonomous service robots in polar coordinates

    Get PDF
    This paper presents an adaptive robust control method for trajectory tracking and path following of an omni-directional wheeled mobile platform with actuators' uncertainties. The polar-space kinematic model of the platform with three independent driving omnidirectional wheels equally spaced at 120 from one another is briefly introduced, and the dynamic models of the three uncertain servomotors mounted on the driving wheels are also described. With the platform's kinematic model and the motors' dynamic model associated two unknown parameters, the adaptive robust controller is synthesized via the integral backstepping approach. Computer simulations and experimental results are conducted to show the effectiveness and merits of the proposed control method in comparison with a conventional PI feedback control method

    Parameter tuning and cooperative control for automated guided vehicles

    Get PDF
    For several practical control engineering applications it is desirable that multiple systems can operate independently as well as in cooperation with each other. Especially when the transition between individual and cooperative behavior and vice versa can be carried out easily, this results in ??exible and scalable systems. A subclass is formed by systems that are physically separated during individual operation, and very tightly coupled during cooperative operation. One particular application of multiple systems that can operate independently as well as in concert with each other is the cooperative transportation of a large object by multiple Automated Guided Vehicles (AGVs). AGVs are used in industry to transport all kinds of goods, ranging from small trays of compact and video discs to pallets and 40-tonne coils of steel. Current applications typically comprise a ??eet of AGVs, and the vehicles transport products on an individual basis. Recently there has been an increasing demand to transport very large objects such as sewer pipes, rotor blades of wind turbines and pieces of scenery for theaters, which may reach lengths of over thirty meters. A realistic option is to let several AGVs operate together to handle these types of loads. This Ph.D. thesis describes the development, implementation, and testing of distributed control algorithms for transporting a load by two or more Automated Guided Vehicles in industrial environments. We focused on the situations where the load is connected to the AGVs by means of (semi-)rigid interconnections. Attention was restricted to control on the velocity level, which we regard as an intermediate step for achieving fully automatic operation. In our setup the motion setpoint is provided by an external host. The load is assumed to be already present on the vehicles. Docking and grasping procedures are not considered. The project is a collaboration between the company FROG Navigation Systems (Utrecht, The Netherlands) and the Control Systems group of the Technische Universiteit Eindhoven. FROG provided testing facilities including two omni-directional AGVs. Industrial AGVs are custom made for the transportation tasks at hand and come in a variety of forms. To reduce development times it is desirable to follow a model-based control design approach as this allows generalization to a broad class of vehicles. We have adopted rigid body modeling techniques from the ??eld of robotic manipulators to derive the equations of motion for the AGVs and load in a systematic way. These models are based on physical considerations such as Newton's second law and the positions and dimensions of the wheels, sensors, and actuators. Special emphasis is put on the modeling of the wheel-??oor interaction, for which we have adopted tire models that stem from the ??eld of vehicle dynamics. The resulting models have a clear physical interpretation and capture a large class of vehicles with arbitrary wheel con??gurations. This ensures us that the controllers, which are based on these models, are applicable to a broad class of vehicles. An important prerequisite for achieving smooth cooperative behavior is that the individual AGVs operate at the required accuracy. The performance of an individual AGV is directly related to the precision of the estimates for the odometric parameters, i.e. the effective wheel diameters and the offsets of the encoders that measure the steering angles of the wheels. Cooperative transportation applications will typically require AGVs that are highly maneuverable, which means that all the wheels of an individual AGV ahould be able to steer. Since there will be more than one steering angle encoder, the identi??cation of the odometric parameters is substantially more dif??cult for these omni-directional AGVs than for the mobile wheeled robots that are commonly seen in literature and laboratory settings. In this thesis we present a novel procedure for simultaneously estimating effective wheel diameters and steering angle encoder offsets by driving several pure circle segments. The validity of the tuning procedure is con??rmed by experiments with the two omni-directional test vehicles with varying loads. An interesting result is that the effective wheel diameters of the rubber wheels of our AGVs increase with increasing load. A crucial aspect in all control designs is the reconstruction of the to-be-controlled variables from measurement data. Our to-be-controlled variables are the planar motion of the load and the motions of the AGVs with respect to the load, which have to be reconstruct from the odometric sensor information. The odometric sensor information consists of the drive encoder and steering encoder readings. We analyzed the observability of an individual AGV and proved that it is theoretically possible to reconstruct its complete motion from the odometric measurements. Due to practical considerations, we pursued a more pragmatic least-squares based observer design. We show that the least-squares based motion estimate is independent of the coordinate system that is being used. The motion estimator was subsequently analyzed in a stochastic setting. The relation between the motion estimator and the estimated velocity of an arbitrary point on the vehicle was explored. We derived how the covariance of the velocity estimate of an arbitrary point on the vehicle is related to the covariance of the motion estimate. We proved that there is one unique point on the vehicle for which the covariance of the estimated velocity is minimal. Next, we investigated how the local motion estimates of the individual AGVs can be combined to yield one global estimate. When the load and AGVs are rigidly interconnected, it suf??ces that each AGVs broadcasts its local motion estimate and receives the estimates of the other AGVs. When the load is semi-rigidly interconnected to the AGVs, e.g. by means of revolute or prismatic joints, then generally each AGV needs to broadcasts the corresponding information matrix as well. We showed that the information matrix remains constant when the load is connected to the AGV with a revolute joint that is mounted at the aforementioned unique point with the smallest velocity estimate covariance. This means that the corresponding AGV does not have to broadcast its information matrix for this special situation. The key issue in the control design for cooperative transportation tasks is that the various AGVs must not counteract each others' actions. The decentralized controller that we derived makes the AGVs track an externally provided planar motion setpoint while minimizing the interconnection forces between the load and the vehicles. Although the control design is applicable to cooperative transportation by multiple AGVs with arbitrary semi-rigid AGV-load interconnections, it is noteworthy that a particularly elegant solution arises when all interconnections are completely rigid. Then the derived local controllers have the same structure as the controllers that are normally used for individual operation. As a result, changing a few parameter settings and providing the AGVs with identical setpoints is all that is required to achieve cooperative behavior on the velocity level for this situation. The observer and controller designs for the case that the AGVs are completely rigidly interconnected to the load were successfully implemented on the two test vehicles. Experi ments were carried out with and without a load that consisted of a pallet with 300 kg pave stones. The results were reproducible and illustrated the practical validity of the observer and controller designs. There were no substantial drawbacks when the local observers used only their local sensor information, which means that our setup can also operate satisfactory when the velocity estimates are not shared with the other vehicles

    Virtual Structure Based Formation Tracking of Multiple Wheeled Mobile Robots: An Optimization Perspective

    Get PDF
    Today, with the increasing development of science and technology, many systems need to be optimized to find the optimal solution of the system. this kind of problem is also called optimization problem. Especially in the formation problem of multi-wheeled mobile robots, the optimization algorithm can help us to find the optimal solution of the formation problem. In this paper, the formation problem of multi-wheeled mobile robots is studied from the point of view of optimization. In order to reduce the complexity of the formation problem, we first put the robots with the same requirements into a group. Then, by using the virtual structure method, the formation problem is reduced to a virtual WMR trajectory tracking problem with placeholders, which describes the expected position of each WMR formation. By using placeholders, you can get the desired track for each WMR. In addition, in order to avoid the collision between multiple WMR in the group, we add an attraction to the trajectory tracking method. Because MWMR in the same team have different attractions, collisions can be easily avoided. Through simulation analysis, it is proved that the optimization model is reasonable and correct. In the last part, the limitations of this model and corresponding suggestions are given

    Vision-based Global Path Planning and Trajectory Generation for Robotic Applications in Hazardous Environments

    Get PDF
    The aim of this study is to find an efficient global path planning algorithm and trajectory generation method using a vision system. Path planning is part of the more generic navigation function of mobile robots that consists of establishing an obstacle-free path, starting from the initial pose to the target pose in the robot workspace.In this thesis, special emphasis is placed on robotic applications in industrial and scientific infrastructure environments that are hazardous and inaccessible to humans, such as nuclear power plants and ITER1 and CERN2 LHC3 tunnel. Nuclear radiation can cause deadly damage to the human body, but we have to depend on nuclear energy to meet our great demands for energy resources. Therefore, the research and development of automatic transfer robots and manipulations under nuclear environment are regarded as a key technology by many countries in the world. Robotic applications in radiation environments minimize the danger of radiation exposure to humans. However, the robots themselves are also vulnerable to radiation. Mobility and maneuverability in such environments are essential to task success. Therefore, an efficient obstacle-free path and trajectory generation method are necessary for finding a safe path with maximum bounded velocities in radiation environments. High degree of freedom manipulators and maneuverable mobile robots with steerable wheels, such as non-holonomic omni-directional mobile robots make them suitable for inspection and maintenance tasks where the camera is the only source of visual feedback.In this thesis, a novel vision-based path planning method is presented by utilizing the artificial potential field, the visual servoing concepts and the CAD-based recognition method to deal with the problem of path and trajectory planning. Unlike the majority of conventional trajectory planning methods that consider a robot as only one point, the entire shape of a mobile robot is considered by taking into account all of the robot’s desired points to avoid obstacles. The vision-based algorithm generates synchronized trajectories for all of the wheels on omni-directional mobile robot. It provides the robot’s kinematic variables to plan maximum allowable velocities so that at least one of the actuators is always working at maximum velocity. The advantage of generated synchronized trajectories is to avoid slippage and misalignment in translation and rotation movement. The proposed method is further developed to propose a new vision-based path coordination method for multiple mobile robots with independently steerable wheels to avoid mutual collisions as well as stationary obstacles. The results of this research have been published to propose a new solution for path and trajectory generation in hazardous and inaccessible to human environments where the one camera is the only source of visual feedback

    Locomotion system for ground mobile robots in uneven and unstructured environments

    Get PDF
    One of the technology domains with the greatest growth rates nowadays is service robots. The extensive use of ground mobile robots in environments that are unstructured or structured for humans is a promising challenge for the coming years, even though Automated Guided Vehicles (AGV) moving on flat and compact grounds are already commercially available and widely utilized to move components and products inside indoor industrial buildings. Agriculture, planetary exploration, military operations, demining, intervention in case of terrorist attacks, surveillance, and reconnaissance in hazardous conditions are important application domains. Due to the fact that it integrates the disciplines of locomotion, vision, cognition, and navigation, the design of a ground mobile robot is extremely interdisciplinary. In terms of mechanics, ground mobile robots, with the exception of those designed for particular surroundings and surfaces (such as slithering or sticky robots), can move on wheels (W), legs (L), tracks (T), or hybrids of these concepts (LW, LT, WT, LWT). In terms of maximum speed, obstacle crossing ability, step/stair climbing ability, slope climbing ability, walking capability on soft terrain, walking capability on uneven terrain, energy efficiency, mechanical complexity, control complexity, and technology readiness, a systematic comparison of these locomotion systems is provided in [1]. Based on the above-mentioned classification, in this thesis, we first introduce a small-scale hybrid locomotion robot for surveillance and inspection, WheTLHLoc, with two tracks, two revolving legs, two active wheels, and two passive omni wheels. The robot can move in several different ways, including using wheels on the flat, compact ground,[1] tracks on soft, yielding terrain, and a combination of tracks, legs, and wheels to navigate obstacles. In particular, static stability and non-slipping characteristics are considered while analyzing the process of climbing steps and stairs. The experimental test on the first prototype has proven the planned climbing maneuver’s efficacy and the WheTLHLoc robot's operational flexibility. Later we present another development of WheTLHLoc and introduce WheTLHLoc 2.0 with newly designed legs, enabling the robot to deal with bigger obstacles. Subsequently, a single-track bio-inspired ground mobile robot's conceptual and embodiment designs are presented. This robot is called SnakeTrack. It is designed for surveillance and inspection activities in unstructured environments with constrained areas. The vertebral column has two end modules and a variable number of vertebrae linked by compliant joints, and the surrounding track is its essential component. Four motors drive the robot: two control the track motion and two regulate the lateral flexion of the vertebral column for steering. The compliant joints enable limited passive torsion and retroflection of the vertebral column, which the robot can use to adapt to uneven terrain and increase traction. Eventually, the new version of SnakeTrack, called 'Porcospino', is introduced with the aim of allowing the robot to move in a wider variety of terrains. The novelty of this thesis lies in the development and presentation of three novel designs of small-scale mobile robots for surveillance and inspection in unstructured environments, and they employ hybrid locomotion systems that allow them to traverse a variety of terrains, including soft, yielding terrain and high obstacles. This thesis contributes to the field of mobile robotics by introducing new design concepts for hybrid locomotion systems that enable robots to navigate challenging environments. The robots presented in this thesis employ modular designs that allow their lengths to be adapted to suit specific tasks, and they are capable of restoring their correct position after falling over, making them highly adaptable and versatile. Furthermore, this thesis presents a detailed analysis of the robots' capabilities, including their step-climbing and motion planning abilities. In this thesis we also discuss possible refinements for the robots' designs to improve their performance and reliability. Overall, this thesis's contributions lie in the design and development of innovative mobile robots that address the challenges of surveillance and inspection in unstructured environments, and the analysis and evaluation of these robots' capabilities. The research presented in this thesis provides a foundation for further work in this field, and it may be of interest to researchers and practitioners in the areas of robotics, automation, and inspection. As a general note, the first robot, WheTLHLoc, is a hybrid locomotion robot capable of combining tracked locomotion on soft terrains, wheeled locomotion on flat and compact grounds, and high obstacle crossing capability. The second robot, SnakeTrack, is a small-size mono-track robot with a modular structure composed of a vertebral column and a single peripherical track revolving around it. The third robot, Porcospino, is an evolution of SnakeTrack and includes flexible spines on the track modules for improved traction on uneven but firm terrains, and refinements of the shape of the track guidance system. This thesis provides detailed descriptions of the design and prototyping of these robots and presents analytical and experimental results to verify their capabilities

    MIRRAX: A Reconfigurable Robot for Limited Access Environments

    Get PDF
    The development of mobile robot platforms for inspection has gained traction in recent years with the rapid advancement in hardware and software. However, conventional mobile robots are unable to address the challenge of operating in extreme environments where the robot is required to traverse narrow gaps in highly cluttered areas with restricted access. This paper presents MIRRAX, a robot that has been designed to meet these challenges with the capability of re-configuring itself to both access restricted environments through narrow ports and navigate through tightly spaced obstacles. Controllers for the robot are detailed, along with an analysis on the controllability of the robot given the use of Mecanum wheels in a variable configuration. Characterisation on the robot's performance identified suitable configurations for operating in narrow environments. The minimum lateral footprint width achievable for stable configuration (<2o<2^\text{o}~roll) was 0.19~m. Experimental validation of the robot's controllability shows good agreement with the theoretical analysis. A further series of experiments shows the feasibility of the robot in addressing the challenges above: the capability to reconfigure itself for restricted entry through ports as small as 150mm diameter, and navigating through cluttered environments. The paper also presents results from a deployment in a Magnox facility at the Sellafield nuclear site in the UK -- the first robot to ever do so, for remote inspection and mapping.Comment: 10 pages, Under review for IEEE Transactions on Robotic
    corecore