18 research outputs found

    Micro/nanoscale magnetic robots for biomedical applications

    Get PDF
    Magnetic small-scale robots are devices of great potential for the biomedical field because of the several benefits of this method of actuation. Recent work on the development of these devices has seen tremendous innovation and refinement toward ​improved performance for potential clinical applications. This review briefly details recent advancements in small-scale robots used for biomedical applications, covering their design, fabrication, applications, and demonstration of ability, and identifies the gap in studies and the difficulties that have persisted in the optimization of the use of these devices. In addition, alternative biomedical applications are also suggested for some of the technologies that show potential for other functions. This study concludes that although the field of small-scale robot research is highly innovative ​there is need for more concerted efforts to improve functionality and reliability of these devices particularly in clinical applications. Finally, further suggestions are made toward ​the achievement of commercialization for these devices

    Desiging an efficient tidal turbine blade through Bio-mimicry: A systemic review

    Get PDF
    Purpose: A comprehensive literature review is conducted in the tidal energy physics, the ocean environment, hydrodynamics of horizontal axis tidal turbines, and bio-mimicry. Design/methodology/approach: The paper provides an insight of the tidal turbine blade design and need for renewable energy sources to generate electricity through clean energy sources and less CO2 emission. The ocean environment along with hydrodynamic design principles of a horizontal axis tidal turbine blade are described, including theoretical maximum efficiency, Blade Element Momentum theory, and non-dimensional forces acting on tidal turbine blades. Findings: This review gives an overview of fish locomotion identifying the attributes of the swimming like lift based thrust propulsion, the locomotion driving factors: dorsal fins, caudal fins in propulsion, which enable the fish to be efficient even at low tidal velocities. Originality/ value: Finally, after understanding the phenomenon of caudal fin propulsion and its relationship with tidal turbine blade hydrodynamics; this review focuses on the implications of bio-mimicking a curved caudal fin to design an efficient Horizontal Axis Tidal Turbine

    Bioinspired reorientation strategies for application in micro/nanorobotic control

    Get PDF
    Engineers have recently been inspired by swimming methodologies of microorganisms in creating micro-/nanorobots for biomedical applications. Future medicine may be revolutionized by the application of these small machines in diagnosing, monitoring, and treating diseases. Studies over the past decade have often concentrated on propulsion generation. However, there are many other challenges to address before the practical use of robots at the micro-/nanoscale. The control and reorientation ability of such robots remain as some of these challenges. This paper reviews the strategies of swimming microorganisms for reorientation, including tumbling, reverse and flick, direction control of helical-path swimmers, by speed modulation, using complex flagella, and the help ofmastigonemes. Then, inspired by direction change in microorganisms,methods for orientation control for microrobots and possible directions for future studies are discussed. Further, the effects of solid boundaries on the swimming trajectories of microorganisms and microrobots are examined. In addition to propulsion systems for artificial microswimmers, swimming microorganisms are promising sources of control methodologies at the micro-/nanoscale

    Elastic Inflatable Actuators for Soft Robotic Applications

    Get PDF
    The 20th century’s robotic systems have been made out of stiff materials and much of the developments in the field have pursued ever more accurate and dynamic robots which thrive in industrial automation settings and will probably continue to do so for many decades to come. However, the 21st century’s robotic legacy may very well become that of soft robots. This emerging domain is characterized by continuous soft structures that simultaneously fulfil the role of robotic link and robotic actuator, where prime focus is on design and fabrication of the robotic hardware instead of software control to achieve a desired operation. These robots are anticipated to take a prominent role in delicate tasks where classic robots fail, such as in minimally invasive surgery, active prosthetics and automation tasks involving delicate irregular objects. Central to the development of these robots is the fabrication of soft actuators to generate movement. This paper reviews a particularly attractive type of soft actuators that are driven by pressurized fluids. These actuators have recently gained substantial traction on the one hand due to the technology push from better simulation tools and new manufacturing technologies including soft-lithography and additive manufacturing, and on the other hand by a market pull from the applications listed above. This paper provides an overview of the different advanced soft actuator configurations, their design, fabrication and applications.This research is supported by the Fund for Scientific Research-Flanders (FWO), and the European Research Council (ERC starting grant HIENA)

    Elastic Inflatable Actuators for Soft Robotic Applications

    Get PDF
    The 20th century’s robotic systems have been made out of stiff materials and much of the developments in the field have pursued ever more accurate and dynamic robots which thrive in industrial automation settings and will probably continue to do so for many decades to come. However, the 21st century’s robotic legacy may very well become that of soft robots. This emerging domain is characterized by continuous soft structures that simultaneously fulfil the role of robotic link and robotic actuator, where prime focus is on design and fabrication of the robotic hardware instead of software control to achieve a desired operation. These robots are anticipated to take a prominent role in delicate tasks where classic robots fail, such as in minimally invasive surgery, active prosthetics and automation tasks involving delicate irregular objects. Central to the development of these robots is the fabrication of soft actuators to generate movement. This paper reviews a particularly attractive type of soft actuators that are driven by pressurized fluids. These actuators have recently gained substantial traction on the one hand due to the technology push from better simulation tools and new manufacturing technologies including soft-lithography and additive manufacturing, and on the other hand by a market pull from the applications listed above. This paper provides an overview of the different advanced soft actuator configurations, their design, fabrication and applications.This research is supported by the Fund for Scientific Research-Flanders (FWO), and the European Research Council (ERC starting grant HIENA)

    A Novel Propeller Design for Micro-Swimming robot

    Get PDF
    The applications of a micro-swimming robot such as minimally invasive surgery, liquid pipeline robot etc. are widespread in recent years. The potential application fields are so inspiring, and it is becoming more and more achievable with the development of microbiology and Micro-Electro-Mechanical Systems (MEMS). The aim of this study is to improve the performance of micro-swimming robot through redesign the structure. To achieve the aim, this study reviewed all of the modelling methods of low Reynolds number flow including Resistive-force Theory (RFT), Slender Body Theory (SBT), and Immersed Boundary Method (IBM) etc. The swimming model with these methods has been analysed. Various aspects e.g. hydrodynamic interaction, design, development, optimisation and numerical methods from the previous researches have been studied. Based on the previous design of helix propeller for micro-swimmer, this study has proposed a novel propeller design for a micro-swimming robot which can improve the velocity with simplified propulsion structure. This design has adapted the coaxial symmetric double helix to improve the performance of propulsion and to increase stability. The central lines of two helical tails overlap completely to form a double helix structure, and its tail radial force is balanced with the same direction and can produce a stable axial motion. The verification of this design is conducted using two case studies. The first one is a pipe inspection robot which is in mm scale and swims in high viscosity flow that satisfies the low Reynolds number flow condition. Both simulation and experiment analysis are conducted for this case study. A cross-development method is adopted for the simulation analysis and prototype development. The experiment conditions are set up based on the simulation conditions. The conclusion from the analysis of simulation results gives suggestions to improve design and fabrication for the prototype. Some five revisions of simulation and four revisions of the prototype have been completed. The second case study is the human blood vessel robot. For the limitations of fabrication technology, only simulation is conducted, and the result is compared with previous researches. The results show that the proposed propeller design can improve velocity performance significantly. The main outcomes of this study are the design of a micro-swimming robot with higher velocity performance and the validation from both simulation and experiment

    Inherently Elastic Actuation for Soft Robotics

    Get PDF

    Functional Soft Robotic Actuators Based on Dielectric Elastomers

    Get PDF
    Dielectric elastomer actuators (DEAs) are a promising soft actuator technology for robotics. Adding robotic functionalities--folding, variable stiffness, and adhesion--into their actuator design is a novel method to create functionalized robots with simplified actuator configurations. We first propose a foldable actuator that has a simple antagonistic DEA configuration allowing bidirectional actuation and passive folding. To prove the concept, a foldable elevon actuator with outline size of 70 mm × 130 mm is developed with a performance specification matched to a 400 mm wingspan micro air vehicle (MAV) of mass 130 g. The developed actuator exhibits actuation angles up to ± 26 ° and a torque of 2720 mN·mm in good agreement with a prediction model. During a flight, two of these integrated elevon actuators well controlled the MAV, as proven by a strong correlation of 0.7 between the control signal and the MAV motion. We next propose a variable stiffness actuator consisting of a pre-stretched DEA bonded on a low-melting-point alloy (LMPA) embedded silicone substrate. The phase of the LMPA changes between liquid and solid enabling variable stiffness of the structure, between soft and rigid states, while the DEA generates a bending actuation. A proof-of-concept actuator with dimension 40 mm length × 10mm width × 1mm thickness and a mass of 1 g is fabricated and characterized. Actuation is observed up to 47.5 ° angle and yielding up to 2.4 mN of force in the soft state. The stiffness in the rigid state is ~90 × larger than an actuator without LMPA. We develop a two-finger gripper in which the actuators act as the fingers. The rigid state allows picking up an object mass of 11 g (108 mN), to be picked up even though the actuated grasping force is only 2.4 mN. We finally propose an electroadhesion actuator that has a DEA design simultaneously maximizing electroadhesion and electrostatic actuation, while allowing self-sensing by employing an interdigitated electrode geometry. The concept is validated through development of a two-finger soft gripper, and experimental samples are characterized to address an optimal design. We observe that the proposed DEA design generates 10 × larger electroadhesion force compared to a conventional DEA design, equating to a gripper with a high holding force (3.5 N shear force for 1 cm^2) yet a low grasping force (1 mN). These features make the developed simple gripper to handle a wide range of challenging objects such as highly-deformable water balloons (35.6 g), flat paper (0.8 g), and a raw chicken egg (60.9 g), with its lightweight (1.5 g) and fast movement (100 ms to close fingers). The results in this thesis address the creation of the functionalized robots and expanding the use of DEAs in robotics

    Design and application of a cellular, piezoelectric, artificial muscle actuator for biorobotic systems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 219-227).One of the foremost challenges in robotics is the development of muscle-like actuators that have the capability to reproduce the smooth motions observed in animals. Biological muscles have a unique cellular structure that departs from traditional electromechanical actuators in several ways. A muscle consists of a vast number of muscle fibers and, more fundamentally, sarcomeres that act as cellular units or building blocks. A muscle's output force and displacement are the aggregate effect of the individual building blocks. Thus, without using gearing or transmissions, muscles can be tailored to a range of loads, satisfying specific force and displacement requirements. These natural actuators are desirable for biorobotic applications, but many of their characteristics have been difficult to reproduce artificially. This thesis develops and applies a new artificial muscle actuator based on piezoelectric technology. The essential approach is to use a subdivided, cellular architecture inspired by natural muscle. The primary contributions of this work stem from three sequential aims. The first aim is to develop the operating principles and design of the actuator cellular units. The basic operating principle of the actuator involves nested flexural amplifiers applied to piezoelectric stacks thereby creating an output length strain commensurate with natural muscle. The second aim is to further improve performance of the actuator design by imparting tunable stiffness and resonance capabilities. This work demonstrates a previously unavailable level of tunability in both stiffness and resonance. The final aim is to showcase the capabilities of the actuator design by developing an underwater biorobotic fish system that utilizes the actuators for resonance-based locomotion. Each aspect of this thesis is supported by rigorous analysis and functional prototypes that augment broadly applicable design concepts.by Thomas William Secord.Ph.D
    corecore