19 research outputs found

    Design, Development and Assessment of Control Schemes for IDMS in a Standardized RTCP-based Solution

    Full text link
    [EN] Currently, several media sharing applications that allow social interactions between distributed users are gaining momentum. In these networked scenarios, synchronized playout between the involved participants must be provided to enable truly interactive and coherent shared media experiences. This research topic is known as Inter-Destination Media Synchronization (IDMS). This paper presents the design and development of an advanced IDMS solution, which is based on extending the capabilities of RTP/RTCP standard protocols. Particularly, novel RTCP extensions, in combination with several control algorithms and adjustment techniques, have been specified to enable an adaptive, highly accurate and standard compliant IDMS solution. Moreover, as different control or architectural schemes for IDMS exist, and each one is best suited for specific use cases, the IDMS solution has been extended to be able to adopt each one of them. Simulation results prove the satisfactory responsiveness of our IDMS solution in a small scale scenario, as well as its consistent behavior, when using each one of the deployed architectural schemes.This work has been financed, partially, by Universitat Politecnica de Valencia (UPV), under its R&D Support Program in PAID-01-10. TNO's work has been partially funded by European Community's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No. ICT-2011-8-318343 (STEER Project). CWI's work has been partially funded by the European Community's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No. ICT-2011-7-287723 (REVERIE Project).Montagud Aguar, M.; Boronat Segui, F.; Stokking, H.; Cesar, P. (2014). Design, Development and Assessment of Control Schemes for IDMS in a Standardized RTCP-based Solution. Computer Networks. 70:240-259. https://doi.org/10.1016/j.comnet.2014.06.004S2402597

    Inter-Destination Multimedia Synchronization; Schemes, Use Cases and Standardization

    Full text link
    Traditionally, the media consumption model has been a passive and isolated activity. However, the advent of media streaming technologies, interactive social applications, and synchronous communications, as well as the convergence between these three developments, point to an evolution towards dynamic shared media experiences. In this new model, geographically distributed groups of consumers, independently of their location and the nature of their end-devices, can be immersed in a common virtual networked environment in which they can share multimedia services, interact and collaborate in real-time within the context of simultaneous media content consumption. In most of these multimedia services and applications, apart from the well-known intra and inter-stream synchronization techniques that are important inside the consumers playout devices, also the synchronization of the playout processes between several distributed receivers, known as multipoint, group or Inter-destination multimedia synchronization (IDMS), becomes essential. Due to the increasing popularity of social networking, this type of multimedia synchronization has gained in popularity in recent years. Although Social TV is perhaps the most prominent use case in which IDMS is useful, in this paper we present up to 19 use cases for IDMS, each one having its own synchronization requirements. Different approaches used in the (recent) past by researchers to achieve IDMS are described and compared. As further proof of the significance of IDMS nowadays, relevant organizations (such as ETSI TISPAN and IETF AVTCORE Group) efforts on IDMS standardization (in which authors have been and are participating actively), defining architectures and protocols, are summarized.This work has been financed, partially, by Universitat Politecnica de Valencia (UPV), under its R&D Support Program in PAID-05-11-002-331 Project and in PAID-01-10, and by TNO, under its Future Internet Use Research & Innovation Program. The authors also want to thank Kevin Gross for providing some of the use cases included in Sect. 1.2.Montagud, M.; Boronat Segui, F.; Stokking, H.; Van Brandenburg, R. (2012). Inter-Destination Multimedia Synchronization; Schemes, Use Cases and Standardization. Multimedia Systems. 18(6):459-482. https://doi.org/10.1007/s00530-012-0278-9S459482186Kernchen, R., Meissner, S., Moessner, K., Cesar, P., Vaishnavi, I., Boussard, M., Hesselman, C.: Intelligent multimedia presentation in ubiquitous multidevice scenarios. IEEE Multimedia 17(2), 52–63 (2010)Vaishnavi, I., Cesar, P., Bulterman, D., Friedrich, O., Gunkel, S., Geerts, D.: From IPTV to synchronous shared experiences challenges in design: distributed media synchronization. Signal Process Image Commun 26(7), 370–377 (2011)Geerts, D., Vaishnavi, I., Mekuria, R., Van Deventer, O., Cesar, P.: Are we in sync?: synchronization requirements for watching on-line video together, CHI ‘11, New York, USA (2011)Boronat, F., Lloret, J., García, M.: Multimedia group and inter-stream synchronization techniques: a comparative study. Inf. Syst. 34(1), 108–131 (2009)Chen, M.: A low-latency lip-synchronized videoconferencing system. In: SIGCHI Conference on Human Factors in Computing Systems, CHI’03, ACM, pp. 464–471, New York (2003)Ishibashi, Y., Tasaka, S., Ogawa, H.: Media synchronization quality of reactive control schemes. IEICE Trans. Commun. E86-B(10), 3103–3113 (2003)Ademoye, O.A., Ghinea, G.: Synchronization of olfaction-enhanced multimedia. IEEE Trans. Multimedia 11(3), 561–565 (2009)Cesar, P., Bulterman, D.C.A., Jansen, J., Geerts, D., Knoche, H., Seager, W.: Fragment, tag, enrich, and send: enhancing social sharing of video. ACM Trans. Multimedia Comput. Commun. Appl. 5(3), Article 19, 27 pages (2009)Van Deventer, M.O., Stokking, H., Niamut, O.A., Walraven, F.A., Klos, V.B.: Advanced Interactive Television Service Require Synchronization, IWSSIP 2008. Bratislava, June (2008)Premchaiswadi, W., Tungkasthan, A., Jongsawat, N.: Enhancing learning systems by using virtual interactive classrooms and web-based collaborative work. In: Proceedings of the IEEE Education Engineering Conference (EDUCON 2010), pp. 1531–1537. Madrid, Spain (2010)Diot, C., Gautier, L.: A distributed architecture for multiplayer interactive applications on the internet. IEEE Netw 13(4), 6–15 (1999)Mauve, M., Vogel, J., Hilt, V., Effelsberg, W.: Local-lag and timewarp: providing consistency for replicated continuous applications. IEEE Trans. Multimedia 6(1), 45–57 (2004)Hosoya, K., Ishibashi, Y., Sugawara, S., Psannis, K.E.: Group synchronization control considering difference of conversation roles. In: IEEE 13th International Symposium on Consumer Electronics, ISCE ‘09, pp. 948–952 (2009)Roccetti, M., Ferretti, S., Palazzi, C.: The brave new world of multiplayer online games: synchronization issues with smart solution. In: 11th IEEE Symposium on Object Oriented Real-Time Distributed Computing (ISORC), pp. 587–592 (2008)Ott, D.E., Mayer-Patel, K.: An open architecture for transport-level protocol coordination in distributed multimedia applications. ACM Trans. Multimedia Comput. Commun. Appl. 3(3), 17 (2007)Boronat, F., Montagud, M., Guerri, J.C.: Multimedia group synchronization approach for one-way cluster-to-cluster applications. In: IEEE 34th Conference on Local Computer Networks, LCN 2009, pp. 177–184, Zürich (2009)Boronat, F., Montagud, M., Vidal, V.: Smooth control of adaptive media playout to acquire IDMS in cluster-based applications. In: IEEE LCN 2011, pp. 617–625, Bonn (2011)Huang, Z., Wu, W., Nahrstedt, K., Rivas, R., Arefin, A.: SyncCast: synchronized dissemination in multi-site interactive 3D tele-immersion. In: Proceedings of MMSys, USA (2011)Kim, S.-J., Kuester, F., Kim, K.: A global timestamp-based approach for enhanced data consistency and fairness in collaborative virtual environments. ACM/Springer Multimedia Syst. J. 10(3), 220–229 (2005)Schooler, E.: Distributed music: a foray into networked performance. In: International Network Music Festival, Santa Monica, CA (1993)Miyashita, Y., Ishibashi, Y., Fukushima, N., Sugawara, S., Psannis K.E.: QoE assessment of group synchronization in networked chorus with voice and video. In: Proceedings of IEEE TENCON’11, pp. 393–397 (2011)Hesselman, C., Abbadessa, D., Van Der Beek, W., et al.: Sharing enriched multimedia experiences across heterogeneous network infrastructures. IEEE Commun. Mag. 48(6), 54–65 (2010)Montpetit, M., Klym, N., Mirlacher, T.: The future of IPTV—Connected, mobile, personal and social. Multimedia Tools Appl J 53(3), 519–532 (2011)Cesar, P., Bulterman, D.C.A., Jansen, J.: Leveraging the user impact: an architecture for secondary screens usage in an interactive television environment. ACM/Springer Multimedia Syst. 15(3), 127–142 (2009)Lukosch, S.: Transparent latecomer support for synchronous groupware. In: Proceedings of 9th International Workshop on Groupware (CRIWG), Grenoble, France, pp. 26–41 (2003)Steinmetz, R.: Human perception of jitter and media synchronization. IEEE J. Sel. Areas Commun. 14(1), 61–72 (1996)Stokking, H., Van Deventer, M.O., Niamut, O.A., Walraven, F.A., Mekuria, R.N.: IPTV inter-destination synchronization: a network-based approach, ICIN’2010, Berlin (2010)Mekuria, R.N.: Inter-destination media synchronization for TV broadcasts, Master Thesis, Faculty of Electrical Engineering, Mathematics and Computer Science, Department of Network architecture and Services, Delft University of Technology (2011)Pitt Ian, CS2511: Usability engineering lecture notes, localisation of sound sources. http://web.archive.org/web/20100410235208/http:/www.cs.ucc.ie/~ianp/CS2511/HAP.htmlNielsen, J.: Response times: the three important limits. http://www.useit.com/papers/responsetime.html (1994)ITU-T Rec G. 1010: End-User Multimedia QoS Categories. International Telecommunication Union, Geneva (2001)Biersack, E., Geyer, W.: Synchronized delivery and playout of distributed stored multimedia streams. ACM/Springer Multimedia Syst 7(1), 70–90 (1999)Xie, Y., Liu, C., Lee, M.J., Saadawi, T.N.: Adaptive multimedia synchronization in a teleconference system. ACM/Springer Multimedia Syst. 7(4), 326–337 (1999)Laoutaris, N., Stavrakakis, I.: Intrastream synchronization for continuous media streams: a survey of playout schedulers. IEEE Netw. Mag. 16(3), 30–40 (2002)Ishibashi, Y., Tsuji, A., Tasaka, S.: A group synchronization mechanism for stored media in multicast communications. In: Proceedings of the INFOCOM ‘97, Washington (1997)Ishibashi, Y., Tasaka, S.: A group synchronization mechanism for live media in multicast communications. IEEE GLOBECOM’97, pp. 746–752 (1997)Boronat, F., Guerri, J.C., Lloret, J.: An RTP/RTCP based approach for multimedia group and inter-stream synchronization. Multimedia Tools Appl. J. 40(2), 285–319 (2008)Ishibashi, I., Tasaka, S.: A distributed control scheme for group synchronization in multicast communications. In: Proceedings of International Symposium Communications, Kaohsiung, Taiwan, pp. 317–323 (1999)Lu, Y., Fallica, B., Kuipers, F.A., Kooij, R.E., Van Mieghem, P.: Assessing the quality of experience of SopCast. Int. J. Internet Protoc. Technol 4(1), 11–19 (2009)Shamma, D.A., Bastea-Forte, M., Joubert, N., Liu, Y.: Enhancing online personal connections through synchronized sharing of online video, ACM CHI’08 Extended Abstracts, Florence (2008)Ishibashi, Y., Tasaka, S.: A distributed control scheme for causality and media synchronization in networked multimedia games. In: Proceedings of 11th International Conference on Computer Communications and Networks, pp. 144–149, Miami, USA (2002)Ishibashi, Y., Tomaru, K., Tasaka, S., Inazumi, K.: Group synchronization in networked virtual environments. In: Proceedings of the 38th IEEE International Conference on Communications, pp. 885–890, Alaska, USA (2003)Tasaka, S., Ishibashi, Y., Hayashi, M.: Inter–destination synchronization quality in an integrated wired and wireless network with handover. IEEE GLOBECOM 2, 1560–1565 (2002)Kurokawa, Y., Ishibashi, Y., Asano, T.: Group synchronization control in a remote haptic drawing system. In: Proceedings of IEEE International Conference on Multimedia and Expo, pp. 572–575, Beijing, China (2007)Hashimoto, T., Ishibashi, Y.: Group Synchronization Control over Haptic Media in a Networked Real-Time Game with Collaborative Work, Netgames’06, Singapore (2006)Nunome, T., Tasaka, S.: Inter-destination synchronization quality in a multicast mobile ad hoc network. In: Proceedings of IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications, pp. 1366–1370, Berlin, Germany (2005)Brandenburg, R., van Stokking, H., Van Deventer, M.O., Boronat, F., Montagud, M., Gross, K.: RTCP for inter-destination media synchronization, draft-brandenburg-avtcore-rtcp-for-idms-03.txt. In: IETF Audio/Video Transport Core Maintenance Working Group, Internet Draft, March 9 (2012)ETSI TS 181 016 V3.3.1 (2009-07) Telecommunications and Internet converged Services and Protocols for Advanced Networking (TISPAN); Service Layer Requirements to integrate NGN Services and IPTVETSI TS 182 027 V3.5.1 (2011-03) Telecommunications and Internet converged Services and Protocols for Advanced Networking (TISPAN); IPTV Architecture; IPTV functions supported by the IMS subsystemETSI TS 183 063 V3.5.2 (2011-03) Telecommunications and Internet converged Services and Protocols for Advanced Networking (TISPAN); IMS-based IPTV stage 3 specificationBrandenburg van, R., et al.: RTCP XR Block Type for inter-destination media synchronization, draft-brandenburg-avt-rtcp-for-idms-00.txt. In: IETF Audio/Video Transport Working Group, Internet Draft, Sept 24, 2010Williams, A., et al.: RTP Clock Source Signalling, draft-williams-avtcore-clksrc-00. In: IETF Audio/Video Transport Working Group, Internet Draft, February 28, 201

    IDMS solution for hybrid broadcast broadband delivery within the context of HbbTV standard

    Full text link
    "© 2019 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works."[EN] Inter-destination media synchronization (IDMS) is a key requirement to enable successful networked shared media experiences between remote users. This paper presents an adaptive, accurate and standard-compliant IDMS solution for hybrid broadcast and broadband delivery. Apart from providing multi- and cross-technology support, the presented IDMS solution is able to accomplish synchronization when different formats/versions of the same, or even related, contents are being played out in a shared session. It is also able to independently manage the playout processes of different groups of users. The IDMS solution has been integrated within an end-to-end platform, which is compatible with the hybrid broadcast broadband TV standard. It has been applied to digital video broadcasting-terrestrial technology and tested for a Social TV scenario, by also including an ad-hoc chat tool as an interaction channel. The results of the conducted (objective and subjective) evaluations prove the statisfactory behavior and performance of the IDMS solution and platform as well as in terms of the perceived quality of experience.This work was supported by Generalitat Valenciana, Investigacion competitiva proyectos, through the Research and Development Program "Grants for research groups to be consolidated, AICO/2017," under Grant AICO/2017/059.Marfil-Reguero, D.; Boronat, F.; Montagud, M.; Sapena Piera, A. (2019). IDMS solution for hybrid broadcast broadband delivery within the context of HbbTV standard. IEEE Transactions on Broadcasting. 65(4):645-663. https://doi.org/10.1109/TBC.2018.2878285S64566365

    Inter-destination Multimedia Synchronization: A Contemporary Survey

    Get PDF
    The advent of social networking applications, media streaming technologies, and synchronous communications has created an evolution towards dynamic shared media experiences. In this new model, geographically distributed groups of users can be immersed in a common virtual networked environment in which they can interact and collaborate in real- time within the context of simultaneous media content consumption. In this environment, intra-stream and inter-stream synchronization techniques are used inside the consumers’ playout devices, while synchronization of media streams across multiple separated locations is required. This synchronization is nown as multipoint, group or Inter-Destination Multimedia Synchronization (IDMS) and is needed in many applications such as social TV and synchronous e-learning. This survey paper discusses intraand inter-stream synchronization issues, but it mainly focuses on the most well-known IDMS techniques that can be used in emerging distributed multimedia applications. In addition, it provides some research directions for future work

    Impacto de Parámetros de QoS en Aspectos de QoE: Análisis desde el Punto de Vista de la Sincronización Multimedia

    Get PDF
    La sincronización multimedia ha sido un área de investigación clave desde los inicios de los sistemas multimedia. En este artículo se ofrecen una visión general y un análisis sobre el impacto de varios parámetros de QoS en diferentes aspectos de la QoE, desde el punto de vista de la sincronización multimedia. En primer lugar, se presentan los diferentes tipos de sincronización multimedia y su relevancia para garantizar una QoE satisfactoria. En segundo lugar, se muestra que la magnitud de los retardos y su variabilidad en las redes actuales es bastante superior a los umbrales permisibles por los usuarios en diferentes tipos y ejemplos de sincronización multimedia, reflejando así su necesidad. En tercer lugar, se describe el impacto del ancho de banda y la tasa de pérdidas sobre la sincronización multimedia. Por último, se argumenta la influencia del uso de diferentes alternativas para conseguir la sincronización multimedia sobre varios factores de QoS y de QoE

    MediaSync: Handbook on Multimedia Synchronization

    Get PDF
    This book provides an approachable overview of the most recent advances in the fascinating field of media synchronization (mediasync), gathering contributions from the most representative and influential experts. Understanding the challenges of this field in the current multi-sensory, multi-device, and multi-protocol world is not an easy task. The book revisits the foundations of mediasync, including theoretical frameworks and models, highlights ongoing research efforts, like hybrid broadband broadcast (HBB) delivery and users' perception modeling (i.e., Quality of Experience or QoE), and paves the way for the future (e.g., towards the deployment of multi-sensory and ultra-realistic experiences). Although many advances around mediasync have been devised and deployed, this area of research is getting renewed attention to overcome remaining challenges in the next-generation (heterogeneous and ubiquitous) media ecosystem. Given the significant advances in this research area, its current relevance and the multiple disciplines it involves, the availability of a reference book on mediasync becomes necessary. This book fills the gap in this context. In particular, it addresses key aspects and reviews the most relevant contributions within the mediasync research space, from different perspectives. Mediasync: Handbook on Multimedia Synchronization is the perfect companion for scholars and practitioners that want to acquire strong knowledge about this research area, and also approach the challenges behind ensuring the best mediated experiences, by providing the adequate synchronization between the media elements that constitute these experiences

    HbbTV-compliant Platform for Hybrid Media Delivery and Synchronization on Single- and Multi-Device Scenarios

    Full text link
    [EN] The combination of broadcast and broadband (hybrid) technologies for delivering TV related media contents can bring fascinating opportunities. It is motivated by the large amount and diversity of media contents, together with the ubiquity and multiple connectivity capabilities of modern consumption devices. This paper presents an end-to-end platform for the preparation, delivery, and synchronized consumption of related hybrid (broadcast/broadband) media contents on a single device and/or on multiple close-by devices (i.e., a multi-device scenario). It is compatible with the latest version of the Hybrid Broadcast Broadband TV (HbbTV) standard (version 2.0.1). Additionally, it provides adaptive and efficient solutions for key issues not specified in that standard, but that are necessary to successfully deploy hybrid and multidevice media services. Moreover, apart from MPEG-DASH and HTML5, which are the broadband technologies adopted by HbbTV, the platform also provides support for using HTTP Live Streaming and Real-time Transport Protocol and its companion RTP Control Protocol broadband technologies. The presented platform can provide support for many hybrid media services. In this paper, in order to evaluate it, the use case of multi-device and multi-view TV service has been selected. The results of both objective and subjective assessments have been very satisfactory, in terms of performance (stability, smooth playout, delays, and sync accuracy), usability of the platform, usefulness of its functionalities, and the awaken interest in these kinds of platforms.This work was supported in part by the "Fondo Europeo de Desarrollo Regional" and in part by the Spanish Ministry of Economy and Competitiveness through R&D&I Support Program under Grant TEC2013-45492-R.Boronat, F.; Marfil-Reguero, D.; Montagud, M.; Pastor Castillo, FJ. (2017). HbbTV-compliant Platform for Hybrid Media Delivery and Synchronization on Single- and Multi-Device Scenarios. IEEE Transactions on Broadcasting. 1-26. https://doi.org/10.1109/TBC.2017.2781124S12

    Plataforma Web 2.0 para la Sincronización Distribuida de Contenidos Multimedia e Interacción Social

    Get PDF
    Shared media experiences between geographically distributed users are gaining momentum. Relevant examples are Social TV, synchronous e-learning and multi-player online games. This paper presents a first release of Wersync, an adaptive web-based platform that provides distributed media synchronization and social interaction (via shared navigation control commands and text chat channels) across remote users. By using Wersync, users can create or join on-going sessions for concurrently consuming the same media content with other remote users in a synchronized manner. Additionally, Wersync provides two social presence mechanisms to encourage the participation of external users in on-going sessions and two privacy mechanisms. Wersync has been developed by exclusively relying on standard web-based technologies, which ensures cross-network, cross-platform and cross-device support. The evaluation results and a link to a demo video prove the satisfactory performance of Wersync, and its functionalities, respectively

    How to Perform AMP? Cubic Adjustments for Improving the QoE

    Full text link
    [EN] Adaptive Media Playout (AMP) consists of smoothly and dynamically adjusting the media playout rate to recover from undesired (e.g., buffer overflow/underflow or out-of-sync) situations. The existing AMP solutions are mainly characterized by two main aspects. The first one is their goal (e.g., keeping the buffers¿ occupancy into safe ranges or enabling media synchronization). The second one is the criteria that determine the need for triggering the playout adjustments (e.g., buffer fullness or asynchrony levels). This paper instead focuses on a third key aspect, which has not been sufficiently investigated yet: the specific adjustment strategy to be performed. In particular, we propose a novel AMP strategy, called Cubic AMP, which is based on employing a cubic interpolation method to adjust a deviated playout point to a given reference. On the one hand, mathematical analysis and graphical examples show that our proposal provides superior performance than other existing linear and quadratic AMP strategies in terms of the smoothness of the playout curve, while significantly outperforming the quadratic AMP strategy regarding the duration of the adjustment period and without increasing the computational complexity. It has also been proved and discussed that higher-order polynomial interpolation methods are less convenient than cubic ones. On the other hand, the results of subjective tests confirm that our proposal provides better Quality of Experience (QoE) than the other existing AMP strategies.This work has been funded, partially, by the “Fondo Europeo de Desarrollo Regional (FEDER)” and the Spanish Ministry of Economy and Competitiveness, under its R&D&I Support Program, in project with Ref. TEC2013-45492-R.Montagud, M.; Boronat, F.; Roig, B.; Sapena Piera, A. (2017). How to Perform AMP? Cubic Adjustments for Improving the QoE. Computer Communications. 103:61-73. https://doi.org/10.1016/j.comcom.2017.01.017S617310

    Understanding Timelines within MPEG Standards

    Get PDF
    (c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Nowadays, media content can be delivered via diverse broadband and broadcast technologies. Although these different technologies have somehow become rivals, their coordinated usage and convergence, by leveraging of their strengths and complementary characteristics, can bring many benefits to both operators and customers. For example, broadcast TV content can be augmented by on-demand broadband media content to provide enriched and personalized services, such as multi-view TV, audio language selection, and inclusion of real-time web feeds. A piece of evidence is the recent Hybrid Broadcast Broadband TV (HbbTV) standard, which aims at harmonizing the delivery and consumption of (hybrid) broadcast and broadband TV content. A key challenge in these emerging scenarios is the synchronization between the involved media streams, which can be originated by the same or different sources, and delivered via the same or different technologies. To enable synchronized (hybrid) media delivery services, some mechanisms providing timelines at the source side are necessary to accurately time align the involved media streams at the receiver-side. This paper provides a comprehensive review of how clock references (timing) and timestamps (time) are conveyed and interpreted when using the most widespread delivery technologies, such as DVB, RTP/RTCP and MPEG standards (e.g., MPEG-2, MPEG-4, MPEG-DASH, and MMT). It is particularly focused on the format, resolution, frequency, and the position within the bitstream of the fields conveying timing information, as well as on the involved components and packetization aspects. Finally, it provides a survey of proofs of concepts making use of these synchronization related mechanisms. This complete and thorough source of information can be very useful for scholars and practitioners interested in media services with synchronization demands.This work has been funded, partially, by the "Fondo Europeo de Desarrollo Regional" (FEDER) and the Spanish Ministry of Economy and Competitiveness, under its R&D&i Support Program in project with ref TEC2013-45492-R.Yuste, LB.; Boronat Segui, F.; Montagut Climent, MA.; Melvin, H. (2015). Understanding Timelines within MPEG Standards. Communications Surveys and Tutorials, IEEE Communications Society. 18(1):368-400. https://doi.org/10.1109/COMST.2015.2488483S36840018
    corecore