50 research outputs found

    Design and performance investigation of flux-concentrated tubular linear generator for an external combustion free piston engine

    Get PDF
    PhD ThesisThe increasing global desire for highly fuel efficient power systems and the need for environmentally friendly energy sources is driving much present research in electrical power. A linear power system, where a linear machine is driven directly by a free piston engine, offers scalability and a wide range applicability. Standalone power units, hybridised power systems and range extenders in electrified vehicles are all potential applications for this technology. This thesis explores the application of a Linear Joule Engine driving a Permanent Magnet Linear Machine for electrical power generation. Whereas most Joule cycle engines have a rotary compressor and expander, at smaller scale this configuration suffers from leakage around the blades. The linear engine uses a double acting free piston configuration running on the external combustion Joule-cycle, overcoming the low efficiency inherent in small scale gas turbines. The key element for electrical power generation, and the main focus of this thesis, is the development of a linear machine operating as a generator, the design of which is heavily constrained by the geometrical and the operational characteristics of the engine. Using specific constraints for an 5kW engine and by using two dimensional finite element analysis, a novel design methodology of tubular PM linear machine with modular armature winding and feasible arrangements of magnets on the translator member is outlined. The effect of core material, pole number and power conversion system on the machine design are investigated, highlighting the effect of the interconnected design variables on the resulting performance and material use, all satisfying design objectives. A Flux – Concentrated PM configuration is selected for further development. vi In order to accomplish an overall system performance investigation tool, at first the development of a general novel linear machine model is introduced and tested in a feedforward manner with accounts for all machine interacting electromagnetic forces. Then, a novel dynamic model incorporating both the linear machine model driven by the linear Joule engine model, coupled together in a closed loop form, is realized. The coupled model bridges mechanical and electrical parts of the engine-generator, and provides a solid dynamic performance prediction of the system focusing on identifying the effect of cogging force on system performance and the resultant electrical power loss and electrical efficiency. Compared with the reported cogging force reduction techniques, a novel structural technique and a selection criteria are presented with two dimensional axisymmetric finite element analysis verification showing the effectiveness of the proposed technique. Finally, a machine prototype of the selected design model is manufactured and tested on a bespoke test rig to validate the design model findings. Manufacturing recommendations and future achievable steps are reported for future development of the existing work.The Iraqi Ministry of Higher Education and Scientific Research – University of Baghda

    INVESTIGATION INTO SUBMICRON TRACK POSITIONING AND FOLLOWING TECHNOLOGY FOR COMPUTER MAGNETIC DISKS

    Get PDF
    In the recent past some magnetic heads with submicron trackwidth have been developed in order to increase track density of computer magnetic disks, however a servo control system for a submicron trackwidth head has not been investigated. The main objectives of this work are to investigate and develop a new servo pattern recording model, a new position sensor, actuator, servo controller used for submicron track positioning and following on a computer hard disk with ultrahigh track density, to increase its capacity. In this position sensor study, new modes of reading and writing servo information for longitudinal and perpendicular magnetic recording have been developed. The read/write processes in the model have been studied including the recording trackwidth, the bit length, the length and shape of the transition, the relationship between the length of the MR head and the recording wavelength, and the SIN of readout. lt has also been investigated that the servo patterns are magnetized along the radial direction by a transverse writing head that is aligned at right angles with the normal data head and the servo signals are reproduced by a transverse MR head with its stripe and pole gap tangential to the circumferential direction. lt has been studied how the servo signal amplitude and linearity are affected by the length of the MR sensor and the distance between the shields of the head. Such things as the spacing and length of the servo-pattern elements have been optimised so as to achieve minimum jitter and maximum utilisation of the surface of the disk. The factors (i.e. the skew angle of the head) affecting the SIN of the position sensor have been analysed and demonstrated. As a further development, a buried servo method has been studied which uses a servo layer underneath the data layer, so that a continuous servo signal is obtained. A new piezo-electric bimorph actuator has been demonstrated. This can be used as a fine actuator in hard disk recording. The linearity and delay of its response are improved by designing a circuit and selecting a dimension of the bimorph element. A dual-stage actuator has been developed. A novel integrated fine actuator using a piezo-electric bimorph has also been designed. A new type of construction for a magnetic head and actuator has been studied. A servo controller for a dual-stage actuator has been developed. The wholly digital controller for positioning and following has been designed and its performances have been simulated by the MAL TAB computer program. A submicron servo track writer and a laser system measuring dynamic micro-movement of a magnetic head have been specially developed for this project. Finally, track positioning and following on 0.7 µm tracks with a 7% trackwidth rms runout has been demonstrated using the new servo method when the disk-was rotating at low speed. This is one of the best results in this field in the world

    Development of Hybrid Electromagnetic Dampers for Vehicle Suspension Systems

    Get PDF
    Vehicle suspension systems have been extensively explored in the past decades, contributing to ride comfort, handling and safety improvements. The new generation of powertrain and propulsion systems, as a new trend in modern vehicles, poses significant challenges to suspension system design. Consequently, novel suspension concepts are required, not only to improve the vehicle’s dynamic performance, but also to enhance the fuel economy by utilizing regeneration functions. However, the development of new-generation suspension systems necessitates advanced suspension components, such as springs and dampers. This Ph.D. thesis, on the development of hybrid electromagnetic dampers is an Ontario Centres of Excellence (OCE) collaborative project sponsored by Mechworks Systems Inc. The ultimate goal of this project is to conduct feasibility study of the development of electromagnetic dampers for automotive suspension system applications. With new improvements in power electronics and magnetic materials, electromagnetic dampers are forging the way as a new technology in vibration isolation systems such as vehicle suspension systems. The use of electromagnetic dampers in active vehicle suspension systems has drawn considerable attention in the recent years, attributed to the fact that active suspension systems have superior performance in terms of ride comfort and road-handling performances compared to their passive and semi-active counterparts in automotive applications. As a response to the expanding demand for superior vehicle suspension systems, this thesis describes the design and development of a new electromagnetic damper as a customized linear permanent magnet actuator to be used in active suspension systems. The proposed electromagnetic damper has energy harvesting capability. Unlike commercial passive/semi-active dampers that convert the vibration kinetic energy into heat, the dissipated energy in electromagnetic dampers can be regenerated as useful electrical energy. Electromagnetic dampers are used in active suspension systems, where the damping coefficient is controlled rapidly and reliably through electrical manipulations. Although demonstrating superb performance, active suspensions still have some issues that must be overcome. They have high energy consumption, weight, and cost, and are not fail-safe in case of a power break-down. Since the introduction of the electromagnetic dampers, the challenge was to address these drawbacks. Hybrid electromagnetic dampers, which are proposed in this Ph.D. thesis, are potential solutions to high weight, high cost, and fail-safety issues of an active suspension system. The hybrid electromagnetic damper utilizes the high performance of an active electromagnetic damper with the reliability of passive dampers in a single package, offering a fail-safe damper while decreasing weight and cost. Two hybrid damper designs are proposed in this thesis. The first one operates based on hydraulic damping as a source of passive damping, while the second design employs the eddy current damping effect to provide the passive damping part of the system. It is demonstrated that the introduction of the passive damping can reduce power consumption and weight in an active automotive suspension system. The ultimate objective of this thesis is to employ existing suspension system and damper design knowledge together with new ideas from electromagnetic theories to develop new electromagnetic dampers. At the same time, the development of eddy current dampers, as a potential source for passive damping element in the final hybrid design, is considered and thoroughly studied. For the very first time, the eddy current damping effect is introduced for the automotive suspension applications. The eddy current passive damper, as a stand-alone unit, is designed, modeled, fabricated and successfully tested. The feasibility of using passive eddy current dampers for automotive suspension applications is also studied. The structure of new passive eddy current dampers is straightforward, requiring no external power supply or any other electronic devices. Proposed novel eddy current dampers are oil-free and non-contact, offering high reliability and durability with their simplified design. To achieve the defined goals, analytical modeling, numerical simulations, and lab-based experiments are conducted. A number of experimental test-beds are prepared for various experimental analyses on the fabricated prototypes as well as off-the-shelf dampers. Various prototypes, such as eddy current and electromagnetic dampers, are manufactured, and tested in frequency/time domains for verification of the derived analytical and numerical models, and for proof of concept. In addition, fluid and heat transfer analyses are done during the process of the feasibility study to ensure the durability and practical viability of the proposed hybrid electromagnetic dampers. The presented study is only a small portion of the growing research in this area, and it is hoped that the results obtained here will lead to the realization of a safer and more superior automotive suspension system

    Extended analytical charge modeling for permanent-magnet based devices : practical application to the interactions in a vibration isolation system

    Get PDF
    This thesis researches the analytical surface charge modeling technique which provides a fast, mesh-free and accurate description of complex unbound electromagnetic problems. To date, it has scarcely been used to design passive and active permanent-magnet devices, since ready-to-use equations were still limited to a few domain areas. Although publications available in the literature have demonstrated the surface-charge modeling potential, they have only scratched the surface of its application domain. The research that is presented in this thesis proposes ready-to-use novel analytical equations for force, stiffness and torque. The analytical force equations for cuboidal permanent magnets are now applicable to any magnetization vector combination and any relative position. Symbolically derived stiffness equations directly provide the analytical 3 £ 3 stiffness matrix solution. Furthermore, analytical torque equations are introduced that allow for an arbitrary reference point, hence a direct torque calculation on any assembly of cuboidal permanent magnets. Some topics, such as the analytical calculation of the force and torque for rotated magnets and extensions to the field description of unconventionally shaped magnets, are outside the scope of this thesis are recommended for further research. A worldwide first permanent-magnet-based, high-force and low-stiffness vibration isolation system has been researched and developed using this advanced modeling technique. This one-of-a-kind 6-DoF vibration isolation system consumes a minimal amount of energy (Ç 1W) and exploits its electromagnetic nature by maximizing the isolation bandwidth (> 700Hz). The resulting system has its resonance > 1Hz with a -2dB per decade acceleration slope. It behaves near-linear throughout its entire 6-DoF working range, which allows for uncomplicated control structures. Its position accuracy is around 4mum, which is in close proximity to the sensor’s theoretical noise level of 1mum. The extensively researched passive (no energy consumption) permanent-magnet based gravity compensator forms the magnetic heart of this vibration isolation system. It combines a 7.1kN vertical force with <10kN/m stiffness in all six degrees of freedom. These contradictory requirements are extremely challenging and require the extensive research into gravity compensator topologies that is presented in this thesis. The resulting cross-shaped topology with vertical airgaps has been filed as a European patent. Experiments have illustrated the influence of the ambient temperature on the magnetic behavior, 1.7h/K or 12N/K, respectively. The gravity compensator has two integrated voice coil actuators that are designed to exhibit a high force and low power consumption (a steepness of 625N2/W and a force constant of 31N/A) within the given current and voltage constraints. Three of these vibration isolators, each with a passive 6-DoF gravity compensator and integrated 2-DoF actuation, are able to stabilize the six degrees of freedom. The experimental results demonstrate the feasibility of passive magnet-based gravity compensation for an advanced, high-force vibration isolation system. Its modular topology enables an easy force and stiffness scaling. Overall, the research presented in this thesis shows the high potential of this new class of electromagnetic devices for vibration isolation purposes or other applications that are demanding in terms of force, stiffness and energy consumption. As for any new class of devices, there are still some topics that require further study before this design can be implemented in the next generation of vibration isolation systems. Examples of these topics are the tunability of the gravity compensator’s force and a reduction of magnetic flux leakage

    Space Mechanisms Lessons Learned Study. Volume 2: Literature Review

    Get PDF
    Hundreds of satellites have been launched to date. Some have operated extremely well and others have not. In order to learn from past operating experiences, a study was conducted to determine the conditions under which space mechanisms (mechanically moving components) have previously worked or failed. The study consisted of an extensive literature review that included both government contractor reports and technical journals, communication and visits (when necessary) to the various NASA and DOD centers and their designated contractors (this included contact with project managers of current and prior NASA satellite programs as well as their industry counterparts), requests for unpublished information to NASA and industry, and a mail survey designed to acquire specific mechanism experience. The information obtained has been organized into two volumes. Volume 1 provides a summary of the lesson learned, the results of a needs analysis, responses to the mail survey, a listing of experts, a description of some available facilities, and a compilation of references. Volume 2 contains a compilation of the literature review synopsis

    Third International Symposium on Magnetic Suspension Technology

    Get PDF
    In order to examine the state of technology of all areas of magnetic suspension and to review recent developments in sensors, controls, superconducting magnet technology, and design/implementation practices, the Third International Symposium on Magnetic Suspension Technology was held at the Holiday Inn Capital Plaza in Tallahassee, Florida on 13-15 Dec. 1995. The symposium included 19 sessions in which a total of 55 papers were presented. The technical sessions covered the areas of bearings, superconductivity, vibration isolation, maglev, controls, space applications, general applications, bearing/actuator design, modeling, precision applications, electromagnetic launch and hypersonic maglev, applications of superconductivity, and sensors

    Design and Optimization of Fast Switching Valves for Large Scale Digital Hydraulic Motors

    Get PDF

    39th Aerospace Mechanisms Symposium

    Get PDF
    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production, and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms. Organized by the Mechanisms Education Association, NASA Marshall Space Flight Center (MSFC) and Lockheed Martin Space Systems Company (LMSSC) share the responsibility for hosting the AMS. Now in its 39th symposium, the AMS continues to be well attended, attracting participants from both the United States and abroad. The 39th AMS was held in Huntsville, Alabama, May 7-9, 2008. During these 3 days, 34 papers were presented. Topics included gimbals and positioning mechanisms, tribology, actuators, deployment mechanisms, release mechanisms, and sensors. Hardware displays during the supplier exhibit gave attendees an opportunity to meet with developers of current and future mechanism components

    Magnetically actuated micropumps

    Get PDF
    "Lab-On-a-Chip" (LOC) systems are intended to transpose complete laboratory instrumentations on the few square centimetres of a single microfluidic chip. With such devices the objective is to minimize the time and cost associated with routine biological analysis while improving reproducibility. At the heart of these systems, a fluid delivery unit controls and transfers tiny quantities of liquids enabling the biological assays. This explains the need for robust integrated micropumps as a precondition for the development of many LOC devices. In this context, we have developed a rapid prototyping method for the fabrication of microfluidic chips in plastic and glass materials. The microfabrication principle, which is based on the powder blasting microstructuring process, was used to build devices in either polymethylmethacrylate (PMMA) or borosilicate glass. Various types of micropumps have been developed which were all based on external magnetic actuation. The use of ferrofluids (or magnetic liquids) has been the subject of the first part of the research. A piston pump using a ferrofluid plug moved by an external magnet has been studied. The integration of a rare-earth material (NdFeB) in a flexible polydimethylsiloxane (PDMS) membrane, in the form of a powder or as a classical permanent magnet, has then been proposed. An external electromagnet was used to actuate the magnet-containing diaphragm of a reciprocating micropump. Different types of valves, which constitute the critical element in reciprocating micropumps, have also been investigated. We have studied silicone membrane valves, nozzle-diffuser elements and ball valves. While nozzle-diffuser elements present the simplest valving solution from a manufacturing point of view, ball valves have been proposed as a very promising alternative due to their high efficiency. Together with the detailed characterization of the prototypes, we have proposed analytical models that predict the hydrodynamic behaviour of the micropumps. The performances of our micropumps indicate that magnetic actuation is well adapted for LOC microsystems. While we have demonstrated that our proposed microfabrication technique is an excellent rapid prototyping method for disposable plastic devices, our glass micropumps present a competitive low-cost alternative satisfying criteria of biocompatibility and high temperature (130 °C) resistance

    NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 38)

    Get PDF
    Abstracts are provided for 132 patents and patent applications entered into the NASA scientific and technical information system during the period July 1990 through December 1990. Each entry consists of a citation, an abstract, and in most cases, a key illustration selected from the patent or patent application
    corecore